[1] |
D.F. Williams. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol, 24 (1) (2006), pp. 4-8
|
[2] |
D.F. Williams. The biomaterials conundrum in tissue engineering. Tissue Eng Part A, 20 (7-8) ( 2014), pp. 1129-1131. DOI: 10.1089/ten.tea.2013.0769
|
[3] |
D.F. Williams. Essential biomaterials science. Cambridge University Press, Cambridge (2014)
|
[4] |
D.F. Williams. Biocompatibility pathways: biomaterials-induced sterile inflammation, mechanotransduction, and principles of biocompatibility control. ACS Biomater Sci Eng, 3 (1) ( 2017), pp. 2-35. DOI: 10.1021/acsbiomaterials.6b00607
|
[5] |
Williams DF, editor. Definitions in biomaterials:proceedings of a consensus conference of the European Society for Biomaterials; 1986 Mar 3-5; Chester, UK. Amsterdam: Elsevier Science Ltd.; 1987.
|
[6] |
D.F. Williams. On the mechanisms of biocompatibility. Biomaterials, 29 (20) (2008), pp. 2941-2953
|
[7] |
D.F. Williams. There is no such thing as a biocompatible material. Biomaterials, 35 (38) (2014), pp. 10009-10014
|
[8] |
P.A. Mouthuy, S.J.B. Snelling, S.G. Dakin, L. Milković, A.C. Gašparović, A.J. Carr, et al.. Biocompatibility of implantable materials: an oxidative stress viewpoint. Biomaterials, 109 (2016), pp. 55-68
|
[9] |
K. Ren, Y. Chen, H. Wu. New materials for microfluidics in biology. Curr Opin Biotechnol, 25 (2014), pp. 78-85
|
[10] |
K.N. Ekdahl, J.D. Lambris, H. Elwing, D. Ricklin, P.H. Nilsson, Y. Teramura, et al.. Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev, 63 (12) (2011), pp. 1042-1050
|
[11] |
A. Ambesi, P.J. McKeown-Longo. Conformational remodeling of the fibronectin matrix selectively regulates VEGF signaling. J Cell Sci, 127 (Pt 17) (2014), pp. 3805-3816
|
[12] |
S. Tenzer, D. Docter, J. Kuharev, A. Musyanovych, V. Fetz, R. Hecht, et al.. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol, 8 (10) ( 2013), pp. 772-781. DOI: 10.1038/nnano.2013.181
|
[13] |
T. Iskratsch, H. Wolfenson, M.P. Sheetz. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol, 15 (12) ( 2014), pp. 825-833. DOI: 10.1038/nrm3903
|
[14] |
K.C. Koskinas, Y.S. Chatzizisis, A.P. Antoniadis, G.D. Giannoglou. Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J Am Coll Cardiol, 59 (15) (2012), pp. 1337-1349
|
[15] |
N. Huebsch, P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali, S.A. Bencherif, et al.. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater, 9 (6) ( 2010), pp. 518-526. DOI: 10.1038/nmat2732
|
[16] |
Y. Li, X. Zhang, D. Cao. Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale, 7 (6) (2015), pp. 2758-2769
|
[17] |
G.Y. Chen, G. Nuñez. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol, 10 (12) ( 2010), pp. 826-837. DOI: 10.1038/nri2873
|
[18] |
M.J.P. Biggs, R.G. Richards, M.J. Dalby. Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine, 6 (5) (2010), pp. 619-633
|
[19] |
E.K.F. Yim, M.P. Sheetz.Force-dependent cell signaling in stem cell differentiation. Stem Cell Res Ther, 3 (5) (2012), p. 41
|
[20] |
A.J. Keung, E.M. de Juan-Pardo, D.V. Schaffer, S. Kumar. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells, 29 (11) ( 2011), pp. 1886-1897. DOI: 10.1002/stem.746
|
[21] |
A.B. Yeatts, D.T. Choquette, J.P. Fisher. Bioreactors to influence stem cell fate: augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochim Biophys Acta, 1830 (2) (2013), pp. 2470-2480
|
[22] |
A.B. Castillo, C.R. Jacobs. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep, 8 (2) ( 2010), pp. 98-104. DOI: 10.1007/s11914-010-0015-2
|
[23] |
L.A. Reis, L.L.Y. Chiu, N. Feric, L. Fu, M. Radisic. Biomaterials in myocardial tissue engineering. J Tissue Eng Regen Med, 10 (1) ( 2016), pp. 11-28. DOI: 10.1002/term.1944
|
[24] |
T. Jacobs, R. Morent, N. De Geyter, P. Dubruel, C. Leys. Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Process, 32 (5) ( 2012), pp. 1039-1073. DOI: 10.1007/s11090-012-9394-8
|
[25] |
A. Leal-Egaña, T. Scheibel. Interactions of cell with silk surfaces. J Mater Chem, 22 (29) ( 2012), pp. 14330-14336. DOI: 10.1039/c2jm31174g
|
[26] |
S.P. Zustiak, Y. Wei, J.B. Leach. Protein-hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Eng Part B Rev, 19 (2) ( 2013), pp. 160-171. DOI: 10.1089/ten.teb.2012.0458
|
[27] |
M. Gonen-Wadmany, L. Oss-Ronen, D. Seliktar. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials, 28 (26) (2007), pp. 3876-3886
|
[28] |
G. Wick, C. Grundtman, C. Mayerl, T.F. Wimpissinger, J. Feichtinger, B. Zelger, et al.. The immunology of fibrosis. Annu Rev Immunol, 31 ( 2013), pp. 107-135. DOI: 10.1146/annurev-immunol-032712-095937
|
[29] |
H. Guo, J.B. Callaway, J.P.Y. Ting. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med, 21 (7) ( 2015), pp. 677-687. DOI: 10.1038/nm.3893
|
[30] |
T.A. Wynn, K.M. Vannella. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 44 (3) (2016), pp. 450-462
|
[31] |
E. Martínez, A. Lagunas, C.A. Mills, S. Rodríguez-Seguí, M. Estévez, S. Oberhansl, et al.. Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine (Lond), 4 (1) ( 2009), pp. 65-82. DOI: 10.2217/17435889.4.1.65
|