
从绿色化学的角度提高石油采收率——通过二氧化碳泡沫进行封存
Carbon Sequestration through CO2 Foam-Enhanced Oil Recovery: A Green Chemistry Perspective
Enhanced oil recovery (EOR) via carbon dioxide (CO2) flooding has received a considerable amount of attention as an economically feasible method for carbon sequestration, with many recent studies focusing on developing enhanced CO2 foaming additives. However, the potential long-term environmental effects of these additives in the event of leakage are poorly understood and, given the amount of additives injected in a typical CO2 EOR operation, could be far-reaching. This paper presents a summary of recent developments in surfactant and surfactant/nanoparticle-based CO2 foaming systems, with an emphasis on the possible environmental impacts of CO2 foam leakage. Most of the surfactants studied are unlikely to degrade under reservoir conditions, and their release can cause major negative impacts on wildlife. With recent advances in the use of additives (e.g., nonionic surfactants, nanoparticles, and other chemicals) the use of harsh anionic surfactants may no longer be warranted. This paper discusses recent advances in producing foaming systems, and highlights possible strategies to develop environmentally friendly CO2 EOR methods.
Surfactants / Nanoparticles / Carbon sequestration / Enhanced oil recovery
[1] |
Moritis G.. CO2 miscible, steam dominate enhanced oil recovery processes. Oil Gas J Tulsa. 2010; 108(14): 36-40.
|
[2] |
Enick RM, Olsen DK. Mobility and conformance control for carbon dioxide enhanced oil recovery (CO2-EOR) via thickeners, foams, and gels—a detailed literature review of 40 years of research. Report. Pittsburgh: National Energy Technology Laboratory, US Department of Energy; 2012.
|
[3] |
Duda J.R., Kuuskraa V., Godec M., Van Leeuwen T.. Modeling exercises assess US CO2-EOR potential. Oil Gas J Tulsa. 2010; 108(13): 52-55.
|
[4] |
Bernard G.C., Holm L.W., Harvey C.P.. Use of surfactant to reduce CO2 mobility in oil displacement. SPE J. 1980; 20(4): 281-292.
|
[5] |
Eastoe J., Hatzopoulos M.H., Tabor R.. Microemulsions. In:
|
[6] |
Li R.F., Yan W., Liu S., Hirasaki G.J., Miller C.A.. Foam mobility control for surfactant enhanced oil recovery. SPE J. 2010; 15(4): 928-948.
|
[7] |
Hirasaki G.J., Miller C.A., Puerto M.. Recent advances in surfactant EOR. SPE J. 2011; 16(4): 889-907.
|
[8] |
Xing D., Wei B., McLendon W., Enick R.M., McNulty S., Trickett K.,
|
[9] |
Cummings S., Enick R., Rogers S., Heenan R., Eastoe J.. Amphiphiles for supercritical CO2. Biochimie. 2012; 94(1): 94-100.
|
[10] |
Sagir M, Tan IM, Mushtaq M, Talebian SH. FAWAG using CO2-philic surfactants for CO2 mobility control for enhanced oil recovery applications. In: Proceedings of the SPE Saudi Arabia Section Technical Symposium and Exhibition; 2014 Apr 21–24; Al-Khobar, Saudi Arabia. Richardson: Society of Petroleum Engineers; 2014.
|
[11] |
Basics of green chemistry [Internet]. Washington, DC: Green Chemistry Program, US Environmental Protection Agency; [cited 2017 Nov 4]. Available from: https://www.epa.gov/greenchemistry/basics-green-chemistry.
|
[12] |
Iribarren D., Petrakopoulou F., Dufour J.. Environmental and thermodynamic evaluation of CO2 capture, transport and storage with and without enhanced resource recovery. Energy. 2013; 50: 477-485.
|
[13] |
Aarra M.G., Skauge A., Solbakken J., Ormehaug P.A.. Properties of N2- and CO2-foams as a function of pressure. J Petrol Sci Eng. 2014; 116: 72-80.
|
[14] |
Perera M., Gamage R., Rathnaweera T., Ranathunga A., Koay A., Choi X.. A review of CO2-enhanced oil recovery with a simulated sensitivity analysis. Energies. 2016; 9(12): 481.
|
[15] |
Talebian S.H., Masoudi R., Tan I.M., Zitha P.L.J.. Foam assisted CO2-EOR: a review of concept, challenges, and future prospects. J Petrol Sci Eng. 2014; 120: 202-215.
|
[16] |
Shamsijazeyi H., Miller C.A., Wong M.S., Tour J.M., Verduzco R.. Polymer-coated nanoparticles for enhanced oil recovery. J Appl Polym Sci. 2014; 131(15): 4401-4404.
|
[17] |
Barnes JR, Regalado DP, Doll MJ, King TE, Pretzer LE, Semple TC. Essentials of upscaling surfactants for EOR field projects. In: Proceedings of the Twentieth SPE Improved Oil Recovery Conference; 2016 Apr 11–13; Tulsa, OK, USA. Red Hook: Curran Associates, Inc.; 2016. p. 681–98.
|
[18] |
Li D., Ren B., Zhang L., Ezekiel J., Ren S., Feng Y.. CO2-sensitive foams for mobility control and channeling blocking in enhanced WAG process. Chem Eng Res Des. 2015; 102: 234-243.
|
[19] |
Zhang Y.M., Chu Z.L., Dreiss C.A., Wang Y.J., Fei C.H., Feng Y.J.. Smart wormlike micelles switched by CO2 and air. Soft Matter. 2013; 9(27): 6217-6221.
|
[20] |
Zhang Y.M., Feng Y.J., Wang Y.J., Li X.L.. CO2-switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir. 2013; 29(13): 4187-4192.
|
[21] |
Sagir M., Tan I.M., Mushtaq M., Pervaiz M., Tahir M.S., Shahzad K.. CO2 mobility control using CO2-philic surfactant for enhanced oil recovery. J Pet Explor Prod Technol. 2016; 6(3): 401-407.
|
[22] |
Talebian S.H., Tan I.M., Sagir M., Muhammad M.. Static and dynamic foam/oil interactions: potential of CO2-philic surfactants as mobility control agents. J Petrol Sci Eng. 2015; 135: 118-126.
|
[23] |
Farzaneh S.A., Sohrabi M.. Experimental investigation of CO2-foam stability improvement by alkaline in the presence of crude oil. Chem Eng Res Des. 2015; 94: 375-389.
|
[24] |
Xu X., Saeedi A., Liu K.. An experimental study of combined foam/surfactant polymer (SP) flooding for carbon dioxide-enhanced oil recovery (CO2-EOR). J Petrol Sci Eng. 2017; 149: 603-611.
|
[25] |
Xu X., Saeedi A., Liu K.. Experimental study on a novel foaming formula for CO2 foam flooding. J Energy Resour Technol. 2017; 139(2): 022902.
|
[26] |
Lv M., Wang S.. Studies on CO2 foam stability and the influence of polymer on CO2 foam properties. Int J Oil Gas Coal Technol. 2015; 10: 343-358.
|
[27] |
Lv W., Li Y., Li Y., Zhang S., Deng Q.H., Yang Y.,
|
[28] |
Memon M.K., Elraies K.A., Al-Mossawy M.I.. Impact of new foam surfactant blend with water alternating gas injection on residual oil recovery. J Pet Explor Prod Technol. 2017; 7(3): 843-851.
|
[29] |
AttarHamed F., Zoveidavianpoor M.. The foaming behavior and synergistic effect in aqueous CO2 foam by in situ physisorption of alpha olefin sulfonate and triton X-100 surfactants and their mixture. Petrol Sci Technol. 2014; 32(19): 2376-2386.
|
[30] |
Wang C., Li H.A.. Stability and mobility of foam generated by gas-solvent/surfactant mixtures under reservoir conditions. J Nat Gas Sci Eng. 2016; 34: 366-375.
|
[31] |
Wang Y., Zhang Y., Liu Y., Zhang L., Ren S., Lu J.,
|
[32] |
Dey S., Malik S., Ghosh A., Saha R., Saha B.. A review on natural surfactants. RSC Adv. 2015; 5(81): 65757-65767.
|
[33] |
Yuan Q., Wang X.H., Dandekar A., Sun C.Y., Li Q.P., Ma Z.W.,
|
[34] |
Tang J., Quinlan P.J., Tam K.C.. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter. 2015; 11(18): 3512-3529.
|
[35] |
Liu N. Nanoparticle-stabilized CO2 foam for CO2 EOR application. Final report. Pittsburgh: National Energy Technology Laboratory, US Department of Energy; 2015 Apr.
|
[36] |
Sun X., Zhang Y., Chen G., Gai Z.. Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies. 2017; 10(3): 345.
|
[37] |
Yekeen N., Idris A.K., Manan M.A., Samin A.M., Risal A.R., Kun T.X.. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chin J Chem Eng. 2017; 25(3): 347-357.
|
[38] |
Kalyanaraman N., Arnold C., Gupta A., Tsau J.S., Ghahfarokhi R.B.. Stability improvement of CO2 foam for enhanced oil-recovery applications using polyelectrolytes and polyelectrolyte complex nanoparticles. J Appl Polym Sci. 2017; 134(6): 44491.
|
[39] |
Zhang C., Li Z., Sun Q., Wang P., Wang S., Liu W.. CO2 foam properties and the stabilizing mechanism of sodium bis(2-ethylhexyl) sulfosuccinate and hydrophobic nanoparticle mixtures. Soft Matter. 2016; 12(3): 946-956.
|
[40] |
Li S., Li Z., Wang P.. Experimental study of the stabilization of CO2 foam by sodium dodecyl sulfate and hydrophobic nanoparticles. Ind Eng Chem Res. 2016; 55(5): 1243-1253.
|
[41] |
Rognmo A.U., Horjen H., Fernø M.. Nanotechnology for improved CO2 utilization in CCS: laboratory study of CO2-foam flow and silica nanoparticle retention in porous media. Int J Greenhouse Gas Control. 2017; 64: 113-118.
|
[42] |
AttarHamed F., Zoveidavianpoor M., Jalilavi M.. The incorporation of silica nanoparticle and alpha olefin sulphonate in aqueous CO2 foam: investigation of foaming behavior and synergistic effect. Petrol Sci Technol. 2014; 32(21): 2549-2558.
|
[43] |
Li S., Qiao C., Li Z., Wanambwa S.. Properties of carbon dioxide foam stabilized by hydrophilic nanoparticles and hexadecyltrimethylammonium bromide. Energy Fuels. 2017; 31(2): 1478-1488.
|
[44] |
Farhadi H., Riahi S., Ayatollahi S., Ahmadi H.. Experimental study of nanoparticle-surfactant-stabilized CO2 foam: stability and mobility control. Chem Eng Res Des. 2016; 111: 449-460.
|
[45] |
Emrani A.S., Nasr-El-Din H.A.. Stabilizing CO2 foam by use of nanoparticles. SPE J. 2017; 22(2): 494-504.
|
[46] |
Emrani A.S., Nasr-El-Din H.A.. An experimental study of nanoparticle-polymer-stabilized CO2 foam. Colloids Surf Physicochem Eng Asp. 2017; 524: 17-27.
|
[47] |
Manan M.A., Farad S., Piroozian A., Esmail M.J.A.. Effects of nanoparticle types on carbon dioxide foam flooding in enhanced oil recovery. Petrol Sci Technol. 2015; 33(12): 1286-1294.
|
[48] |
Dong X., Xu J., Cao C., Sun D., Jiang X.. Aqueous foam stabilized by hydrophobically modified silica particles and liquid paraffin droplets. Colloids Surf Physicochem Eng Asp. 2010; 353(2–3): 181-188.
|
[49] |
Yang W., Wang T., Fan Z., Miao Q., Deng Z., Zhu Y.. Foams stabilized by in situ-modified nanoparticles and anionic surfactants for enhanced oil recovery. Energy Fuels. 2017; 31(5): 4721-4730.
|
[50] |
Singh R., Mohanty K.K.. Synergy between nanoparticles and surfactants in stabilizing foams for oil recovery. Energy Fuels. 2015; 29(2): 467-479.
|
[51] |
Yang W., Wang T., Fan Z.. Highly stable foam stabilized by alumina nanoparticles for EOR: effects of sodium cumenesulfonate and electrolyte concentrations. Energy Fuels. 2017; 31(9): 9016-9025.
|
[52] |
Guo F., Aryana S.. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel. 2016; 186: 430-442.
|
[53] |
Lee D., Cho H., Lee J., Huh C., Mohanty K.. Fly ash nanoparticles as a CO2 foam stabilizer. Powder Technol. 2015; 283: 77-84.
|
[54] |
Kumar S., Mandal A.. Investigation on stabilization of CO2 foam by ionic and nonionic surfactants in presence of different additives for application in enhanced oil recovery. Appl Surf Sci. 2017; 420: 9-20.
|
[55] |
Wang J., Xue G., Tian B., Li S., Chen K., Wang D.,
|
[56] |
Al-Anssari S., Arif M., Wang S., Barifcani A., Iglauer S.. Stabilising nanofluids in saline environments. J Colloid Interface Sci. 2017; 508: 222-229.
|
[57] |
Liu L.C., Li Q., Zhang J.T., Cao D.. Toward a framework of environmental risk management for CO2 geological storage in China: gaps and suggestions for future regulations. Mitig Adapt Strategies Global Change. 2016; 21(2): 191-207.
|
[58] |
Xue L., Ma J., Wang S., Li Q., Ma J., Yu H.,
|
[59] |
Koornneef J., Ramírez A., Turkenburg W., Faaij A.. The environmental impact and risk assessment of CO2 capture, transport and storage—an evaluation of the knowledge base using the DPSIR framework. Energy Procedia. 2011; 4: 2293-2300.
|
[60] |
Hamoodi A.N., Abed A.F., Firoozabadi A.. Compositional modelling of two-phase hydrocarbon reservoirs. J Can Pet Technol. 2001; 40(4): 49-60.
|
[61] |
Hoteit H., Santiso E., Firoozabadi A.. An efficient and robust algorithm for the calculation of gas-liquid critical point of multicomponent petroleum fluids. Fluid Phase Equilib. 2006; 241(1–2): 186-195.
|
[62] |
Santiso E., Firoozabadi A.. Curvature dependency of surface tension in multicomponent systems. AIChE J. 2006; 52(1): 311-322.
|
[63] |
LeNeveu D.M.. Potential for environmental impact due to acid gas leakage from wellbores at EOR injection sites near Zama Lake, Alberta. Greenhouse Gases Sci Technol. 2012; 2(2): 99-114.
|
[64] |
Smith S.A., Sorensen J., Steadman E., Harju J.A.. Acid gas injection and monitoring at the Zama Oil Field in Alberta, Canada: a case study in demonstration-scale carbon dioxide sequestration. Energy Procedia. 2009; 1(1): 1981-1988.
|
[65] |
Smith S.A., Sorensen J.A., Steadman E.N., Harju J.A., Ryan D.. Zama acid gas EOR, CO2 sequestration, and monitoring project. Energy Procedia. 2011; 4: 3957-3964.
|
[66] |
Cai B., Li Q., Liu G., Liu L., Jin T., Shi H.. Environmental concern-based site screening of carbon dioxide geological storage in China. Sci Rep. 2017; 7(1): 7598.
|
[67] |
Ma J., Wang X., Gao R., Zhang X., Wei Y., Wang Z.,
|
[68] |
Tang Y., Yang R., Bian X.. A review of sequestration projects and application in China. Sci World J. 2014; 2014(6): 381854.
|
[69] |
Hawkes C.D., McLellan P.J., Zimmer U., Bachu S.. Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs. J Can Pet Technol. 2005; 44(10): 52-61.
|
[70] |
Toxics Release Inventory (TRI) Program: TRI-listed chemicals [Internet]. Washington, DC: TRI Program, US Environmental Protection Agency; [cited 2017 Nov 4]. Available from: https://www.epa.gov/toxics-release-inventory-tri-program/tri-listed-chemicals.
|
[71] |
Asimakopoulos A.G., Thomaidis N.S., Koupparis M.A.. Recent trends in biomonitoring of bisphenol A, 4-t-octylphenol, and 4-nonylphenol. Toxicol Lett. 2012; 210(2): 141-154.
|
[72] |
Soares A., Guieysse B., Jefferson B., Cartmell E., Lester J.N.. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int. 2008; 34(7): 1033-1049.
|
[73] |
Lu Z., Gan J.. Isomer-specific biodegradation of nonylphenol in river sediments and structure-biodegradability relationship. Environ Sci Technol. 2014; 48(2): 1008-1014.
|
[74] |
Rebello S., Asok A.K., Mundayoor S., Jisha M.S.. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett. 2014; 12(2): 275-287.
|
[75] |
Ambily P.S., Rebello S., Jayachandran K., Jisha M.S.. A novel three-stage bioreactor for the effective detoxification of sodium dodecyl sulphate from wastewater. Water Sci Technol. 2017; 76(8): 2167-2176.
|
[76] |
Paulo A.M.S., Plugge C.M., García-Encina P.A., Stams A.J.M.. Anaerobic degradation of sodium dodecyl sulfate (SDS) by denitrifying bacteria. Int Biodeterior Biodegrad. 2013; 84(5): 14-20.
|
[77] |
Könnecker G., Regelmann J., Belanger S., Gamon K., Sedlak R.. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf. 2011; 74(6): 1445-1460.
|
[78] |
García M.T., Campos E., Marsal A., Ribosa I.. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments. Water Res. 2009; 43(2): 295-302.
|
[79] |
Bressan M., Marin M.G., Brunetti R.. Effect of linear alkylbenzene sulphonate (LAS) on skeletal development of sea urchin embryos (Paracentrotus lividus Lmk). Water Res. 1991; 25(5): 613-616.
|
[80] |
Mungray A.K., Kumar P.. Fate of linear alkylbenzene sulfonates in the environment: a review. Int Biodeterior Biodegrad. 2009; 63(8): 981-987.
|
[81] |
Rosal R., Rodea-Palomares I., Boltes K., Fernández-Piñas F., Leganés F., Petre A.. Ecotoxicological assessment of surfactants in the aquatic environment: combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere. 2010; 81(2): 288-293.
|
[82] |
Merrettig-Bruns U., Jelen E.. Anaerobic biodegradation of detergent surfactants. Material (Basel). 2009; 2(1): 181-206.
|
[83] |
Olkowska E., Polkowska Ż., Namieśnik J.. Analytics of surfactants in the environment: problems and challenges. Chem Rev. 2011; 111(9): 5667-5700.
|
[84] |
Kim I.Y., Joachim E., Choi H., Kim K.. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine (Lond). 2015; 11(6): 1407-1416.
|
[85] |
Murugadoss S., Lison D., Godderis L., Van Den Brule S., Mast J., Brassinne F.,
|
[86] |
Chen Q., Xue Y., Sun J.. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomed. 2013; 8: 1129-1140.
|
[87] |
Chen X., Wang Z., Zhou J., Fu X., Liang J., Qiu Y.,
|
[88] |
Forest V., Pailleux M., Pourchez J., Boudard D., Tomatis M., Fubini B.,
|
Jennifer A. Clark and Erik E. Santiso declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |