
气候变化条件下提高小麦产量和适应性——关键物候基因的优化
Developing Wheat for Improved Yield and Adaptation Under a Changing Climate: Optimization of a Few Key Genes
Wheat grown under rain-fed conditions is often affected by drought worldwide. Future projections from a climate simulation model predict that the combined effects of increasing temperature and changing rainfall patterns will aggravate this drought scenario and may significantly reduce wheat yields unless appropriate varieties are adopted. Wheat is adapted to a wide range of environments due to the diversity in its phenology genes. Wheat phenology offers the opportunity to fight against drought by modifying crop developmental phases according to water availability in target environments. This review summarizes recent advances in wheat phenology research, including vernalization (Vrn), photoperiod (Ppd), and also dwarfing (Rht) genes. The alleles, haplotypes, and copy number variation identified for Vrn and Ppd genes respond differently in different climatic conditions, and thus could alter not only the development phases but also the yield. Compared with the model plant Arabidopsis, more phenology genes have not yet been identified in wheat; quantifying their effects in target environments would benefit the breeding of wheat for improved drought tolerance. Hence, there is scope to maximize yields in water-limited environments by deploying appropriate phenology gene combinations along with Rht genes and other important physiological traits that are associated with drought resistance.
Phenology / Wheat / Vernalization / Photoperiod / Drought / Climate change
[1] |
Braun H.J., Atlin G., Payne T.. Multi-location testing as a tool to identify plant response to global climate change. In:
|
[2] |
FAOSTAT database collections [Internet]. Rome: Food and Agriculture Organization of the United Nations; c2017 [cited 2015 Oct 23]. Available from: http://www.fao.org/faostat/en/#data/QC.
|
[3] |
Boyer J.S.. Plant productivity and environment. Science. 1982; 218(4571): 443-448.
|
[4] |
AQUASTAT main database (2015) [Internet]. Rome: Food and Agriculture Organization of the United Nations; c2017 [cited 2015 Oct 22]. Available from: http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en.
|
[5] |
Zaynali Nezhad K., Weber W.E., Röder M.S., Sharma S., Lohwasser U., Meyer R.C.,
|
[6] |
Byerlee D., Morris M.. Research for marginal environments: are we underinvested?. Food Policy. 1993; 18(5): 381-393.
|
[7] |
Morris M.L., Belaid A., Byerlee D.. Part 1: wheat and barley production in rainfed marginal environments of the developing world. In: 1990–91 CIMMYT world wheat facts and trends: wheat and barley production in rainfed marginal environments of the developing world. Mexico: International Maize and Wheat Improvement Center; 1991. p. 1-28.
|
[8] |
Lobell D.B., Gourdji S.M.. The influence of climate change on global crop productivity. Plant Physiol. 2012; 160(4): 1686-1697.
|
[9] |
Intergovernmental Panel on Climate Change. Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al. editors., Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2014. p. 1–32.
|
[10] |
Nelson G.C., Rosegrant M.W., Koo J., Robertson R., Sulser T., Zhu T.,
|
[11] |
In:
|
[12] |
Turner N.C.. Sustainable production of crops and pastures under drought in a Mediterranean environment. Ann Appl Biol. 2004; 144(2): 139-147.
|
[13] |
Nachit M.M.. Durum breeding research to improve dryland productivity in the Mediterranean region. In:
|
[14] |
Lopez C.G., Banowetz G.M., Peterson C.J., Kronstad W.E.. Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci. 2003; 43(2): 577-582.
|
[15] |
Serraj R., Hash C.T., Rizvi S.M.H., Sharma A., Yadav R.S., Bidinger F.R.. Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci. 2005; 8(3): 334-337.
|
[16] |
Slafer G.A., Abeledo L.G., Miralles D.J., Gonzalez F.G., Whitechurch E.M.. Photoperiod sensitivity during stem elongation as an avenue to raise potential yield in wheat. Euphytica. 2001; 119(1–2): 191-197.
|
[17] |
Whitechurch E.M., Slafer G.A.. Contrasting Ppd alleles in wheat: effects on sensitivity to photoperiod in different phases. Field Crops Res. 2002; 73(2–3): 95-105.
|
[18] |
Saini H.S., Westgate M.E.. Reproductive development in grain crops during drought. Adv Agron. 1999; 68: 59-96.
|
[19] |
Richards R.A.. Crop improvement for temperate Australia: future opportunities. Field Crops Res. 1991; 26(2): 141-169.
|
[20] |
Worland A.J.. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica. 1996; 89(1): 49-57.
|
[21] |
Debaeke P.. Scenario analysis for cereal management in water-limited conditions by the means of a crop simulation model (STICS). Agronomie. 2004; 24(6–7): 315-326.
|
[22] |
Cockram J., Jones H., Leigh F.J., O’Sullivan D., Powell W., Laurie D.A.,
|
[23] |
Barrett B., Bayram M., Kidwell K., Weber W.E.. Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat using reciprocal mapping populations. Plant Breed. 2002; 121(5): 400-406.
|
[24] |
Acevedo E.. Assessing crop and plant attributes for cereal improvement in water-limited Mediterranean environments. In:
|
[25] |
Reynolds M., Foulkes M.J., Slafer G.A., Berry P., Parry M.A., Snape J.W.,
|
[26] |
In:
|
[27] |
Kato K., Yamagata H.. Method for evaluation of chilling requirement and narrow-sense earliness of wheat cultivars. Jpn J Breed. 1988; 38(2): 172-186. Japanese
|
[28] |
Trevaskis B.. The central role of the VERNALIZATION1 gene in the vernalization response of cereals. Funct Plant Biol. 2010; 37(6): 479-487.
|
[29] |
Le Gouis J., Bordes J., Ravel C., Heumez E., Faure S., Praud S.,
|
[30] |
Pugsley A.T.. A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agric Res. 1971; 22(1): 21-31.
|
[31] |
Dubcovsky J., Lijavetzky D., Appendino L., Tranquilli G.. Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet. 1998; 97(5–6): 968-975.
|
[32] |
Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M.,
|
[33] |
Law C.N., Worland A.J., Giorgi B.. The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat. Heredity. 1976; 36(1): 49-58.
|
[34] |
Galiba G., Quarrie S.A., Sutka J., Morgounov A., Snape J.W.. RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet. 1995; 90(7–8): 1174-1179.
|
[35] |
Law C.N., Wolfe M.S.. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol. 1966; 8(3): 462-470.
|
[36] |
Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J.. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA. 2003; 100(10): 6263-6268.
|
[37] |
Yan L., Loukoianov A., Blechl A., Tranquilli G., Ramakrishna W., SanMiguel P.,
|
[38] |
Stelmakh A.F.. Genetic effects of the Vrn1-3 loci and specific action of the dominant Vrn3 allele in common bread wheat. Cytol Genet. 1987; 21(4): 278-286. Russian
|
[39] |
Tranquilli G., Dubcovsky J.. Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. J Hered. 2000; 91(4): 304-306.
|
[40] |
Trevaskis B., Hemming M.N., Dennis E.S., Peacock W.J.. The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 2007; 12(8): 352-357.
|
[41] |
Tsunewaki K., Jenkins B.C.. Monosomic and conventional gene analyses in common wheat. II. Growth habit and awnedness. J Genet. 1961; 36(11–12): 428-443. Japanese
|
[42] |
Roberts D.M.A., MacDonald M.D.. Evidence for the multiplicity of alleles at Vrn1, the winter–spring habit locus in common wheat. Can J Genet Cytol. 1984; 26(2): 191-193.
|
[43] |
Koval S.F., Goncharov N.P.. Multiple allelism at the VRN1 locus of common wheat. Acta Agron Hung. 1998; 46(2): 113-119.
|
[44] |
Yan L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J.. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet. 2004; 109(8): 1677-1686.
|
[45] |
Fu D., Szűcs P., Yan L., Helguera M., Skinner J.S., von Zitzewitz J.,
|
[46] |
Santra D.K., Santra M., Allan R.E., Campbell K.G., Kidwell K.K.. Genetic and molecular characterization of vernalization genes Vrn-A1, Vrn-B1, and Vrn-D1 in spring wheat germplasm from the Pacific Northwest region of the USA. Plant Breed. 2009; 128(6): 576-584.
|
[47] |
Milec Z., Tomková L., Sumíková T., Pánková K.. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed. 2012; 30(1): 317-323.
|
[48] |
Zhang J., Wang Y., Wu S., Yang J., Liu H., Zhou Y.. A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor Appl Genet. 2012; 125(8): 1697-1704.
|
[49] |
Nishida H., Yoshida T., Kawakami K., Fujita M., Long B., Akashi Y.,
|
[50] |
Wilhelm E.P., Turner A.S., Laurie D.A.. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet. 2009; 118(2): 285-294.
|
[51] |
Muterko A., Kalendar R., Cockram J., Balashova I.. Discovery, evaluation and distribution of haplotypes and new alleles of the Photoperiod-A1 gene in wheat. Plant Mol Biol. 2015; 88(1–2): 149-164.
|
[52] |
Díaz A., Zikhali M., Turner A.S., Isaac P., Laurie D.A.. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One. 2012; 7(3):
|
[53] |
Cane K., Eagles H.A., Laurie D.A., Trevaskis B., Vallance N., Eastwood R.F.,
|
[54] |
Beales J., Turner A., Griffiths S., Snape J.W., Laurie D.A.. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 2007; 115(5): 721-733.
|
[55] |
Guo Z., Song Y., Zhou R., Ren Z., Jia J.. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol. 2010; 185(3): 841-851.
|
[56] |
Gotoh T.. Genetic studies on growth habit of some important spring wheat cultivars in Japan, with special reference to the identification of the spring genes involved. JapaneseJpn J Breed. 1979; 29(2): 133-145.
|
[57] |
Stelmakh A.. Geographic distribution of Vrn-genes in landraces and improved varieties of spring bread wheat. Euphytica. 1990; 45(2): 113-118.
|
[58] |
Goncharov N.P.. Genetic resources of wheat related species: The Vrn genes controlling growth habit (spring vs. winter). Euphytica. 1998; 100(1–3): 371-376.
|
[59] |
Stelmakh A.F.. Genetic systems regulating flowering response in wheat. Euphytica. 1998; 100(1–3): 359-369.
|
[60] |
Iwaki K., Nakagawa K., Kuno H., Kato K.. Ecogeographical differentiation in East Asian wheat, revealed from the geographical variation of growth habit and Vrn genotype. Euphytica. 2000; 111(2): 137-143.
|
[61] |
Iwaki K., Haruna S., Niwa T., Kato K.. Adaptation and ecological differentiation in wheat with special reference to geographical variation of growth habit and Vrn genotype. Plant Breed. 2001; 120(2): 107-114.
|
[62] |
Trevaskis B., Bagnall D.J., Ellis M.H., Peacock W.J., Dennis E.S.. MADS-box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA. 2003; 100(22): 13099-13104.
|
[63] |
Danyluk J., Kane N.A., Breton G., Limin A.E., Fowler D.B., Sarhan F.. TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 2003; 132(4): 1849-1860.
|
[64] |
Szűcs P., Skinner J.S., Karsai I., Cuesta-Marcos A., Haggard K.G., Corey A.E.,
|
[65] |
Hemming M.N., Fieg S., James Peacock W., Dennis E.S., Trevaskis B.. Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Mol Genet Genomics. 2009; 282(2): 107-117.
|
[66] |
McIntosh R.A., Hart G.E., Devos K.M., Gale M.D., Rogers W.J.. Catalogue of gene symbols for wheat. In:
|
[67] |
Goncharov N.P.. Genetics of growth habit (spring vs winter) in common wheat: confirmation of the existence of dominant gene Vrn4. Theor Appl Genet. 2003; 107(4): 768-772.
|
[68] |
Foulkes M.J., Sylvester-Bradley R., Worland A.J., Snape J.W.. Effects of a photoperiod-response gene Ppd-D1 on yield potential and drought resistance in UK winter wheat. Euphytica. 2004; 135(1): 63-73.
|
[69] |
Kumar S., Sharma V., Chaudhary S., Tyagi A., Mishra P., Priyadarshini A.,
|
[70] |
Welsh J.R., Keim D.L., Piratesh B., Richards R.D.. Genetic control of photoperiod response in wheat. In:
|
[71] |
Law C.N., Sutka J., Worland A.J.. A genetic study of day-length response in wheat. Heredity. 1978; 41(2): 185-191.
|
[72] |
Börner A., Worland A.J., Plaschke J., Schumann E., Law C.N.. Pleiotropic effects of genes for reduced height (Rht) and day-length insensitivity (Ppd) on yield and its components for wheat grown in middle Europe. Plant Breed. 1993; 111(3): 204-216.
|
[73] |
Worland A.J., Börner A., Korzun V., Li W.M., Petrovíc S., Sayers E.J.. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica. 1998; 100(1–3): 385-394.
|
[74] |
Snape J.W., Butterworth K., Whitechurch E., Worland A.J.. Waiting for fine times: genetics of flowering time in wheat. Euphytica. 2001; 119(1–2): 185-190.
|
[75] |
Takenaka S., Kawahara T.. Evolution and dispersal of emmer wheat (Triticum sp.) from novel haplotypes of Ppd-1 (photoperiod response) genes and their surrounding DNA sequences. Theor Appl Genet. 2012; 125(5): 999-1014.
|
[76] |
Chen Y., Carver B.F., Wang S., Cao S., Yan L.. Genetic regulation of developmental phases in winter wheat. Mol Breed. 2010; 26(4): 573-582.
|
[77] |
Law C.N., Suarez E., Miller T.E., Worland A.J.. The influence of the group 1 chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity. 1998; 80(1): 83-91.
|
[78] |
Kulwal P.L., Roy J.K., Balyan H.S., Gupta P.K.. QTL mapping for growth and leaf characters in bread wheat. Plant Sci. 2003; 164(2): 267-277.
|
[79] |
Tóth B., Galiba G., Fehér E., Sutka J., Snape J.W.. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet. 2003; 107(3): 509-514.
|
[80] |
Hanocq E., Laperche A., Jaminon O., Lainé A.L., Le Gouis J.. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet. 2007; 114(3): 569-584.
|
[81] |
Griffiths S., Simmonds J., Leverington M., Wang Y., Fish L., Sayers L.,
|
[82] |
Hoogendoorn J.. A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica. 1985; 34(2): 545-558.
|
[83] |
Chen F., Gao M., Zhang J., Zuo A., Shang X., Cui D.. Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biol. 2013; 13: 199.
|
[84] |
Eagles H.A., Cane K., Trevaskis B.. Veery wheats carry an allele of Vrn-A1 that has implications for freezing tolerance in winter wheats. Plant Breed. 2011; 130(4): 413-418.
|
[85] |
Eagles H.A., Cane K., Vallance N.. The flow of alleles of important photoperiod and vernalisation genes through Australian wheat. Crop Pasture Sci. 2009; 60(7): 646-657.
|
[86] |
Iqbal M., Navabi A., Yang R.C., Salmon D.F., Spaner D.. Molecular characterization of vernalization response genes in Canadian spring wheat. Genome. 2007; 50(5): 511-516.
|
[87] |
Dubcovsky J., Loukoianov A., Fu D., Valarik M., Sanchez A., Yan L.. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol. 2006; 60(4): 469-480.
|
[88] |
Distelfeld A., Dubcovsky J.. Characterization of the maintained vegetative phase deletions from diploid wheat and their effect on VRN2 and FT transcript levels. Mol Genet Genomics. 2010; 283(3): 223-232.
|
[89] |
Distelfeld A., Li C., Dubcovsky J.. Regulation of flowering in temperate cereals. Curr Opin Plant Biol. 2009; 12(2): 178-184.
|
[90] |
Shimada S., Ogawa T., Kitagawa S., Suzuki T., Ikari C., Shitsukawa N.,
|
[91] |
Rebetzke G.J., Bonnett D.G., Ellis M.H.. Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Res. 2012; 127: 17-25.
|
[92] |
Waddington S.R., Ransom J.K., Osmanzai M., Saunders D.A.. Improvement in the yield potential of bread wheat adapted to northwest Mexico. Crop Sci. 1986; 26(4): 698-703.
|
[93] |
Chapman S.C., Mathews K.L., Trethowan R.M., Singh R.P.. Relationships between height and yield in near-isogenic spring wheats that contrast for major reduced height genes. Euphytica. 2007; 157(3): 391-397.
|
[94] |
Keyes G.J., Paolillo D.J., Sorrells M.E.. The effects of dwarfing genes Rht1 and Rht2 on cellular dimensions and rate of leaf elongation in wheat. Ann Bot. 1989; 64(6): 683-690.
|
[95] |
Donald C.M., Puckridge D.W.. The ecology of the wheat crop. In:
|
[96] |
Allan R.E.. Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat. Crop Sci. 1989; 29(5): 1103-1108.
|
[97] |
Richards R.A.. The effect of dwarfing genes in spring wheat in dry environments. I. Agronomic characteristics. Aust J Agric Res. 1992; 43(3): 517-527.
|
[98] |
Rebetzke G.J., Botwright T.L., Moore C.S., Richards R.A., Condon A.G.. Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res. 2004; 88(2–3): 179-189.
|
[99] |
Botwright T.L., Rebetzke G.J., Condon A.G., Richards R.A.. Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot. 2005; 95(4): 631-639.
|
[100] |
Peng J., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E.,
|
[101] |
Leuning R., Condon A.G., Dunin F.X., Zegelin S., Denmead O.T.. Rainfall interception and evaporation from soil below a wheat canopy. Agric For Meteorol. 1994; 67(3–4): 221-238.
|
[102] |
Siddique K.H.M., Tennant D., Perry M.W., Belford R.K.. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment. Aust J Agric Res. 1990; 41(3): 431-447.
|
[103] |
Regan K.L., Siddique K.H.M., Turner N.C., Whan B.R.. Potential for increasing early vigour and total biomass in spring wheat. II. Characteristics associated with early vigour. Aust J Agric Res. 1992; 43(3): 541-553.
|
[104] |
López-Castañeda C., Richards R.A.. Variation in temperate cereals in rainfed environments III. Water use and water-use efficiency. Field Crops Res. 1994; 39(2–3): 85-98.
|
[105] |
Doyle A.D., Marcellos H.. Time of sowing and wheat yield in northern New South Wales. Aust J Exp Agric Anim Husb. 1974; 14(66): 93-102.
|
[106] |
Shackley B.J., Anderson W.K.. Responses of wheat cultivars to time of sowing in the southern wheatbelt of Western Australia. Aust J Exp Agric. 1995; 35(5): 579-587.
|
[107] |
Hadjichristodoulou A., Della A., Photiades J.. Effect of sowing depth on plant establishment, tillering capacity and other agronomic characters of cereals. J Agric Sci. 1977; 89(1): 161-167.
|
[108] |
Gan Y., Stobbe E.H., Moes J.. Relative date of wheat seedling emergence and its impact on grain yield. Crop Sci. 1992; 32(5): 1275-1281.
|
[109] |
Whan B.R.. The emergence of semidwarf and standard wheats, and its association with coleoptile length. Aust J Exp Agric Anim Husb. 1976; 16(80): 411-416.
|
[110] |
Schillinger W.F., Donaldson E., Allan R.E., Jones S.S.. Winter wheat seedling emergence from deep sowing depths. Agron J. 1998; 90(5): 582-586.
|
[111] |
Richards R.A., Rebetzke G.J., Condon A.G., van Herwaarden A.F.. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci. 2002; 42(1): 111-121.
|
[112] |
Rebetzke G.J., Richards R.A.. Genetic improvement of early vigour in wheat. Aust J Agric Res. 1999; 50(3): 291-302.
|
[113] |
Ellis M.H., Rebetzke G.J., Chandler P., Bonnett D., Spielmeyer W., Richards R.A.. The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol. 2004; 31(6): 583-589.
|
[114] |
Rebetzke G.J., Richards R.A., Fettell N.A., Long M., Condon A.G., Forrester R.I.,
|
[115] |
Borrell A.K., Incoll L.D., Simpson R.J., Dalling M.J.. Partitioning of dry matter and the deposition and use of stem reserves in a semi-dwarf wheat crop. Ann Bot. 1989; 63(5): 527-539.
|
[116] |
Flintham J.E., Börner A., Worland A.J., Gale M.D.. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci. 1997; 128(1): 11-25.
|
[117] |
Rebetzke G.J., Richards R.A., Fischer V.M., Mickelson B.J.. Breeding long coleoptile, reduced height wheats. Euphytica. 1999; 106(2): 159-168.
|
[118] |
Korzun V., Röder M.S., Ganal M.W., Worland A.J., Law C.N.. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet. 1998; 96(8): 1104-1109.
|
[119] |
Ellis M.H., Bonnett D.G.. Rebetzke GJ. A 192bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica. 2007; 157(1–2): 209-214.
|
[120] |
Slafer G.A., Kantolic A.G., Appendino M.L., Miralles D.J., Savin R.. Crop development: genetic control, environmental modulation and relevance for genetic improvement of crop yield. In:
|
[121] |
Fischer R.A.. Number of kernels in wheat crops and the influence of solar radiation and temperature. J Agric Sci. 1985; 105(2): 447-461.
|
[122] |
Passioura J.B.. Grain yield, harvest index, and water use of wheat. J Aust Inst Agric Sci. 1977; 43: 117-120.
|
[123] |
Jamieson P.D., Francis G.S., Wilson D.R., Martin R.J.. Effects of water deficits on evapotranspiration from barley. Agric For Meteorol. 1995; 76(1): 41-58.
|
[124] |
Araus J.L., Slafer G.A., Reynolds M.P., Royo C.. Plant breeding and drought in C3 cereals: what should we breed for?. Ann Bot. 2002; 89(7): 925-940.
|
[125] |
Roberts D.W.A.. Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome. 1990; 33(2): 247-259.
|
[126] |
Borràs-Gelonch G., Rebetzke G.J., Richards R.A.. Romagosa I. Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. J Exp Bot. 2012; 63(1): 69-89.
|
[127] |
Eagles H.A., Cane K., Kuchel H., Hollamby G.J., Vallance N., Eastwood R.F.,
|
[128] |
Eagles H.A., Cane K., Trevaskis B., Vallance N., Eastwood R.F., Gororo N.N.,
|
[129] |
Rebetzke G.J., Rattey A.R., Farquhar G.D., Richards R.A., Condon A.T.G.. Genomic regions for canopy temperature and their genetic association with stomatal conductance and grain yield in wheat. Funct Plant Biol. 2013; 40(1): 14-33.
|
[130] |
Asana R.D.. Physiological analysis of yield of wheat in relation to water-stress and temperature. J Post-Grad Sch Indian Agric Res Inst. 1966; 4: 17-31.
|
[131] |
Brooks A., Jenner C.F., Aspinall D.. Effects of water deficit on endosperm starch granules and on grain physiology of wheat and barley. Aust J Plant Physiol. 1982; 9(4): 423-436.
|
[132] |
Aggarwal P.K., Sinha S.K.. Effect of water stress on grain growth and assimilate partitioning in two cultivars of wheat contrasting in their yield stability in a drought-environment. Ann Bot. 1984; 53(3): 329-340.
|
[133] |
Blum A.. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009; 112(2–3): 119-123.
|
[134] |
Blum A., Shpiler L., Golan G., Mayer J., Sinmena B.. Mass selection of wheat for grain filling without transient photosynthesis. Euphytica. 1991; 54(1): 111-116.
|
[135] |
Kiniry J.R.. Nonstructural carbohydrate utilization by wheat shaded during grain growth. Agron J. 1993; 85(4): 844-849.
|
[136] |
Schnyder H.. The role of carbohydrate storage and redistribution in the source–sink relations of wheat and barley during grain filling—a review. New Phytol. 1993; 123(2): 233-245.
|
[137] |
Borrell A.K., Incoll L.D., Dalling M.J.. The influence of the Rht1 and Rht2 alleles on the deposition and use of stem reserves in wheat. 317 26Ann Bot. 1993; 71(4):
|
[138] |
Izanloo A., Condon A.G., Langridge P., Tester M., Schnurbusch T.. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J Exp Bot. 2008; 59(12): 3327-3346.
|
[139] |
Mir R.R., Zaman-Allah M., Sreenivasulu N., Trethowan R., Varshney R.K.. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet. 2012; 125(4): 625-645.
|
[140] |
Reynolds M., Foulkes J., Furbank R., Griffiths S., King J., Murchie E.,
|
[141] |
Law C.N., Worland A.J.. Genetic analysis of some flowering time and adaptive traits in wheat. New Phytol. 1997; 137(1): 19-28.
|
[142] |
Servin B., Martin O.C., Mézard M., Hospital F.. Toward a theory of marker-assisted gene pyramiding. Genetics. 2004; 168(1): 513-523.
|
[143] |
Mouradov A., Cremer F., Coupland G.. Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell. 2002; 14(Suppl 1): S111-S130.
|
/
〈 |
|
〉 |