
六倍体合成小麦——过去、现在与未来
Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow
In recent years, wheat yield per hectare appears to have reached a plateau, leading to concerns for future food security with an increasing world population. Since its invention, synthetic hexaploid wheat (SHW) has been shown to be an effective genetic resource for transferring agronomically important genes from wild relatives to common wheat. It provides new sources for yield potential, drought tolerance, disease resistance, and nutrient-use efficiency when bred conventionally with modern wheat varieties. SHW is becoming more and more important for modern wheat breeding. Here, we review the current status of SHW generation, study, and application, with a particular focus on its contribution to wheat breeding. We also briefly introduce the most recent progress in our understanding of the molecular mechanisms for growth vigor in SHW. Advances in new technologies have made the complete wheat reference genome available, which offers a promising future for the study and applications of SHW in wheat improvement that are essential to meet global food demand.
Synthetic wheat / Wheat / Polyploidization / Disease resistance / Stress tolerance / Yield
[1] |
Kihara H.. Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic. 1944; 19: 889-890.
|
[2] |
Madlung A.. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013; 110: 99-104.
|
[3] |
Matsuoka Y.. Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol. 2011; 52(5): 750-764.
|
[4] |
McFadden E.S., Sears E.R.. The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered. 1946; 37(3): 81-89.
|
[5] |
Dubcovsky J., Dvorak J.. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007; 316(5833): 1862-1866.
|
[6] |
Rafique K., Rauf C.A., Gul A., Bux H., Ali A., Memon R.A.,
|
[7] |
Zhang L.Q., Liu D.C., Zheng Y.L., Yan Z.H., Dai S.F., Li Y.F.,
|
[8] |
Hao M., Luo J.T., Zeng D.Y., Zhang L., Ning S.Z., Yuan Z.W.,
|
[9] |
Xu S.J., Dong Y.S.. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome. 1992; 35(3): 379-384.
|
[10] |
Luo J., Hao M., Zhang L., Chen J., Zhang L., Yuan Z.,
|
[11] |
Liu D.C., Hao M., Li A.L., Zhang L.Q., Zheng Y.L., Mao L.. Allopolyploidy and interspecific hybridization for wheat improvement. In:
|
[12] |
Das M.K., Bai G.H., Mujeeb-Kazi A., Rajaram S.. Genetic diversity among synthetic hexaploid wheat accessions (Triticum aestivum) with resistance to several fungal diseases. Genet Resour Crop Evol. 2016; 63(8): 1285-1296.
|
[13] |
Pritchard D.J., Hollington P.A., Davies W.P., Gorham J., de Leon J.L.D., Mujeeb-Kazi A.K.. K+/Na+ discrimination in synthetic hexaploid wheat lines: transfer of the trait for K+/Na+ discrimination from Aegilops tauschii into a Triticum turgidum background. Cereal Res Commun. 2002; 30(3): 261-267.
|
[14] |
Mujeeb-Kazi A., Gul A., Farooq M., Rizwan S., Ahmad I.. Rebirth of synthetic hexaploids with global implications for wheat improvement. Aust J Agric Res. 2008; 59(5): 391-398.
|
[15] |
Masood R., Ali N., Jamil M., Bibi K., Rudd J.C., Mujeeb-Kazi A.. Novel genetic diversity of the alien D-genome synthetic hexaploid wheat (2n = 6x = 42, AABBDD) germplasm for various phenology traits. Pak J Bot. 2016; 48(5): 2017-2024.
|
[16] |
Warburton M.L., Crossa J., Franco J., Kazi M., Trethowan R., Rajaram S.,
|
[17] |
McLean E., Cogswell M., Egli I., Wojdyla D., de Benoist B.. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr. 2009; 12(4): 444-454.
|
[18] |
Calderini D.F., Ortiz-Monasterio I.. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci. 2003; 43(1): 141-151.
|
[19] |
Thomas J., Nilmalgoda S., Hiebert C., McCallum B., Humphreys G., DePauw R.. Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop Sci. 2010; 50(6): 2310-2317.
|
[20] |
Guzman C., Medina-Larque A.S., Velu G., Gonzalez-Santoyo H., Singh R.P., Huerta-Espino J.,
|
[21] |
Yang W., Liu D., Li J., Zhang L., Wei H., Hu X.,
|
[22] |
Tahir R., Bux H., Kazi A.G., Rasheed A., Napar A.A., Ajmal S.U.,
|
[23] |
Casey L.W., Lavrencic P., Bentham A.R., Cesari S., Ericsson D.J., Croll T.,
|
[24] |
Periyannan S., Bansal U., Bariana H., Deal K., Luo M.C., Dvorak J.,
|
[25] |
Periyannan S., Moore J., Ayliffe M., Bansal U., Wang X., Huang L.,
|
[26] |
Singh R.P., Mujeeb-Kazi A., Huerta-Espino J.. Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology. 1998; 88(9): 890-894.
|
[27] |
Arraiano L.S., Brading P.A., Brown J.K.M.. A detached seedling leaf technique to study resistance to Mycosphaerella graminicola (anamorph Septoria tritici) in wheat. Plant Pathol. 2001; 50(3): 339-346.
|
[28] |
Tabib Ghaffary S.M., Faris J.D., Friesen T.L., Visser R.G., van der Lee T.A., Robert O.,
|
[29] |
Tadesse W., Hsam S.L.K., Wenzel G., Zeller F.J.. Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. × Aegilops tauschii Coss.). Crop Sci. 2006; 46: 1212-1217.
|
[30] |
Tadesse W., Schmolke M., Hsam S.L.K., Mohler V., Wenzel G., Zeller F.J.. Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor Appl Genet. 2007; 114(5): 855-862.
|
[31] |
Lutz J., Hsam S.L.K.. Limpert E, Zeller FJ. Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity. 1995; 74(2): 152-156.
|
[32] |
Weng Y., Li W., Devkota R.N., Rudd J.C.. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet. 2005; 110(3): 462-469.
|
[33] |
Azhaguvel P., Rudd J.C., Ma Y., Luo M.C., Weng Y.. Fine genetic mapping of greenbug aphid-resistance gene Gb3 in Aegilops tauschii. Theor Appl Genet. 2012; 124(3): 555-564.
|
[34] |
Nkongolo K.K., Quick J.S., Limin A.E., Fowler D.B.. Sources and inheritance of resistance to Russian wheat aphid in Triticum species, amphiploids and Triticum tauschii. Can J Plant Sci. 1991; 71(3): 703-708.
|
[35] |
Thomas J.B., Conner R.I.. Resistance to colonization by the wheat curl mite in Aegilops squarrosa and its inheritance after transfer to common wheat. Crop Sci. 1986; 26(3): 527-530.
|
[36] |
Liu X.M., Gill B.S., Chen M.S.. Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Genet. 2005; 111(2): 243-249.
|
[37] |
Wang T., Xu S.S., Harris M.O., Hu J., Liu L., Cai X.. Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet. 2006; 113(4): 611-618.
|
[38] |
Jighly A., Alagu M., Makdis F., Singh M., Singh S., Emebiri L.C.,
|
[39] |
Zegeye H., Rasheed A., Makdis F., Badebo A., Ogbonnaya F.C.. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One. 2014; 9(8): e105593.
|
[40] |
Kazi A.G., Rasheed A., Mahmood T., Mujeeb-Kazi A.. Molecular and morphological diversity with biotic stress resistances of high 1000-grain weight synthetic hexaploid wheats. Pak J Bot. 2012; 44(3): 1021-1028.
|
[41] |
Liu M., Zhang C.Z., Yuan C.L., Zhang L.Q., Huang L., Wu J.J.,
|
[42] |
Huang L., Zhang L.Q., Liu B.L., Yan Z.H., Zhang B., Zhang H.G.,
|
[43] |
Wang L.M., Zhang Z.Y., Liu H.J., Xu S.C., He M.Z., Liu H.X.,
|
[44] |
Singh R.P., Nelson J.C., Sorrells M.E.. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 2000; 40(4): 1148-1155.
|
[45] |
Li G.Q., Li Z.F., Yang W.Y., Zhang Y., He Z.H., Xu S.C.,
|
[46] |
Ma H., Singh R.P., Mujeeb-kazi A.. Suppression expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica. 1995; 83(2): 87-93.
|
[47] |
Trethowan R.M., Mujeeb-Kazi A.. Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci. 2008; 48(4): 1255-1265.
|
[48] |
Dreccer A.F., Borgognone A.G., Ogbonnaya F.C., Trethowan R.M., Winter B.. CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Res. 2007; 100(2–3): 218-228.
|
[49] |
Munns R., Schachtman D.P., Condon A.G.. The significance of a 2-phase growth-response to salinity in wheat and barley. Aust J Plant Physiol. 1995; 22(4): 561-569.
|
[50] |
Jamil M., Ali A., Akbar K.F., Ghafoor A., Napar A.A., Asad S.,
|
[51] |
Van Ginkel M., Ogbonnaya F.. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res. 2007; 104(1–3): 86-94.
|
[52] |
Jafarzadeh J., Bonnett D., Jannink J.L., Akdemir D., Dreisigacker S., Sorrells M.E.. Breeding value of primary synthetic wheat genotypes for grain yield. PLoS One. 2016; 11(9): e0162860.
|
[53] |
Iehisa J.C.M., Takumi S.. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Genes Genet Syst. 2012; 87(1): 9-18.
|
[54] |
Liu D.C., Lan X.J., Wang Z.R., Zheng Y.L., Zhou Y.H., Yang J.L.,
|
[55] |
Gatford K.T., Hearnden P., Ogbonnaya F., Eastwood R.F., Halloran G.M.. Novel resistance to pre-harvest sprouting in Australian wheat from the wild relative Triticum tauschii. Euphytica. 2002; 126(1): 67-76.
|
[56] |
Imtiaz M., Ogbonnaya F.C., Oman J., van Ginkel M.. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics. 2008; 178(3): 1725-1736.
|
[57] |
Okamoto Y., Nguyen A.T., Yoshioka M., Iehisa J.C.M., Takumi S.. Identification of quantitative trait loci controlling grain size and shape in the D genome of synthetic hexaploid wheat lines. Breed Sci. 2013; 63(4): 423-429.
|
[58] |
Rattey A., Shorter R., Chapman S., Dreccer F., van Herwaarden A.. Variation for and relationships among biomass and grain yield component traits conferring improved yield and grain weight in an elite wheat population grown in variable yield environments. Crop Pasture Sci. 2009; 60(8): 717-729.
|
[59] |
Rattey A.R., Shorter R., Chapman S.C.. Evaluation of CIMMYT conventional and synthetic spring wheat germplasm in rainfed sub-tropical environments. II. Grain yield components and physiological traits. Field Crops Res. 2011; 124(2): 195-204.
|
[60] |
Shearman V.J., Sylvester-Bradley R., Scott R.K., Foulkes M.J.. Physiological processes associated with wheat yield progress in the UK. Crop Sci. 2005; 45(1): 175-185.
|
[61] |
Cooper J.K., Ibrahim A.M.H., Rudd J., Malla S., Hays D.B., Baker J.. Increasing hard winter wheat yield potential via synthetic wheat: I. Path-coefficient analysis of yield and its components. Crop Sci. 2012; 52(5): 2014-2022.
|
[62] |
Del Blanco I.A., Rajaram S., Kronstad W.E.. Agronomic potential of synthetic hexaploid wheat-derived populations. Crop Sci. 2001; 41(3): 670-676.
|
[63] |
Narasimhamoorthy B., Gill B.S., Fritz A.K., Nelson J.C., Brown-Guedira G.L.. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet. 2006; 112(5): 787-796.
|
[64] |
Li J., Wan H.S., Yang W.Y.. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol. 2014; 52(6): 735-742.
|
[65] |
Li J., Wei H.T., Hu X.R., Li C.S., Tang Y.L., Liu D.C.,
|
[66] |
Wan H.S., Yang Y.M., Li J., Zhang Z.F., Yang W.. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica. 2015; 205(1): 275-285.
|
[67] |
Villareal R.L., Fuentes-Davila G., Mujeeb-Kazi A., Rajaram S.. Inheritance of resistance to Tilletia indica (Mitra) in synthetic hexaploid wheat × Triticum aestivum crosses. Plant Breed. 1995; 114(6): 547-548.
|
[68] |
Li A., Liu D., Wu J., Zhao X., Hao M., Geng S.,
|
[69] |
Mestiri I., Chagué V., Tanguy A.M., Huneau C., Huteau V., Belcram H.,
|
[70] |
Shaked H., Kashkush K., Ozkan H., Feldman M., Levy A.A.. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001; 13(8): 1749-1759.
|
[71] |
Zhao N., Xu L., Zhu B., Li M., Zhang H., Qi B.,
|
[72] |
Zhao N., Zhu B., Li M., Wang L., Xu L., Zhang H.,
|
[73] |
Zhang H.K., Bian Y., Gou X.W., Dong Y.Z., Rustgi S., Zhang B.J.,
|
[74] |
Zhang H., Bian Y., Gou X., Zhu B., Xu C., Qi B.,
|
[75] |
Akhunova A.R., Matniyazov R.T., Liang H., Akhunov E.D.. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics. 2010; 11: 505.
|
[76] |
Bottley A., Xia G.M., Koebner R.M.D.. Homoeologous gene silencing in hexaploid wheat. Plant J. 2006; 47(6): 897-906.
|
[77] |
Chagué V., Just J., Mestiri I., Balzergue S., Tanguy A.M., Huneau C.,
|
[78] |
Chelaifa H., Chagué V., Chalabi S., Mestiri I., Arnaud D., Deffains D.,
|
[79] |
He P., Friebe B.R., Gill B.S., Zhou J.M.. Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol. 2003; 52(2): 401-414.
|
[80] |
Pumphrey M., Bai J., Laudencia-Chingcuanco D., Anderson O., Gill B.S.. Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics. 2009; 181(3): 1147-1157.
|
[81] |
Qi B., Huang W., Zhu B., Zhong X., Guo J., Zhao N.,
|
[82] |
Wang J., Tian L., Lee H.S., Wei N.E., Jiang H., Watson B.,
|
[83] |
Rapp R.A., Udall J.A., Wendel J.F.. Genomic expression dominance in allopolyploids. BMC Biol. 2009; 7: 18.
|
[84] |
Lu J., Zhang C., Baulcombe D.C., Chen Z.J.. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc Natl Acad Sci USA. 2012; 109(14): 5529-5534.
|
[85] |
Vaucheret H.. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 2006; 20(7): 759-771.
|
[86] |
Ha M., Lu J., Tian L., Ramachandran V., Kasschau K.D., Chapman E.J.,
|
[87] |
Comai L., Tyagi A.P., Winter K., Holmes-Davis R., Reynolds S.H., Stevens Y.,
|
[88] |
Wang J., Tian L., Madlung A., Lee H.S., Chen M., Lee J.J.,
|
[89] |
Kenan-Eichler M., Leshkowitz D., Tal L., Noor E., Melamed-Bessudo C., Feldman M.,
|
[90] |
Chen Z.J.. Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet. 2013; 14(7): 471-482.
|
[91] |
Jia J., Zhao S., Kong X., Li Y., Zhao G., He W.,
|
[92] |
Ling H.Q., Zhao S., Liu D., Wang J., Sun H., Zhang C.,
|
[93] |
Mayer K.F.X., Rogers J., Dole el J., Pozniak C., Eversole K., Feuillet C.,
|
[94] |
Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H.,
|
[95] |
Zimin A.V., Puiu D., Hall R., Kingan S., Clavijo B.J., Salzberg S.L.. The first near-complete assembly of the hexaploid bread wheat genome Triticum aestivum. Gigascience. 2017; 6(11): 1-7.
|
[96] |
Zhao G., Zou C., Li K., Wang K., Li T., Gao L.,
|
[97] |
Farrakh S., Khalid S., Rafique A., Riaz N., Mujeeb-Kazi A.. Identification of stripe rust resistant genes in resistant synthetic hexaploid wheat accessions using linked markers. Plant Genet Resour. 2016; 14(3): 219-225.
|
[98] |
Islam M.S., Brown-Guedira G., van Sanford D., Ohm H., Dong Y.H., McKendry A.L.. Novel QTL associated with the Fusarium head blight resistance in Truman soft red winter wheat. Euphytica. 2016; 207(3): 571-592.
|
The work related to synthetic wheat is supported by National Natural Science Foundation of China (31661143007 and 31571665) and the Major Breeding Program from Ministry of Science and Technology of China (2016YFD0101004 and 2016YFD0102002).
Aili Li, Dengcai Liu, Wuyun Yang, Masahiro Kishii, and Long Mao declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |