小麦- 偃麦草远缘杂交选育多年生小麦述评

工程(英文) ›› 2018, Vol. 4 ›› Issue (4) : 507-513.

PDF(1744 KB)
PDF(1744 KB)
工程(英文) ›› 2018, Vol. 4 ›› Issue (4) : 507-513. DOI: 10.1016/j.eng.2018.07.003
研究论文
Research Crop Genetics and Breeding—Review

小麦- 偃麦草远缘杂交选育多年生小麦述评

作者信息 +

Development of Perennial Wheat Through Hybridization Between Wheat and Wheatgrasses: A Review

Author information +
History +

Abstract

Wheatgrasses (Thinopyrum spp.), which are relatives of wheat (Triticum aestivum L.), have a perennial growth habit and offer resistance to a diversity of biotic and abiotic stresses, making them useful in wheat improvement. Many of these desirable traits from Thinopyrum spp. have been used to develop wheat cultivars by introgression breeding. The perennial growth habit of wheatgrasses inherits as a complex quantitative trait that is controlled by many unknown genes. Previous studies have indicated that Thinopyrum spp. are able to hybridize with wheat and produce viable/stable amphiploids or partial amphiploids. Meanwhile, efforts have been made to develop perennial wheat by domestication of Thinopyrum spp. The most promising perennial wheat–Thinopyrum lines can be used as grain and/or forage crops, which combine the desirable traits of both parents. The wheat–Thinopyrum lines can adapt to diverse agricultural systems. This paper summarizes the development of perennial wheat based on Thinopyrum, and the genetic aspects, breeding methods, and perspectives of wheat–Thinopyrum hybrids.

Keywords

Thinopyrum / Wheatgrass / Perennial / Triticum aestivum

引用本文

导出引用
. . Engineering. 2018, 4(4): 507-513 https://doi.org/10.1016/j.eng.2018.07.003

参考文献

[1]
Glover J.D., Reganold J.P., Bell L.W., Borevitz J., Brummer E.C., Buckler E.S., . Increased food and ecosystem security via perennial grains. Science. 2010; 328(5986): 1638-1639.
[2]
Jones J.M., Engleson J.. Whole grains: benefits and challenges. Annu Rev Food Sci Technol. 2010; 1: 19-40.
[3]
Department of Economic and Social Affairs of the United Nation. The 2017 revision of word population prospect. Report. Report No.: ESA/P/WP/248
[4]
Eswaran H., Beinroth F., Reich P.. Global land resources and population-supporting capacity. Am J Altern Agric. 1999; 14(3): 129-136.
[5]
Lam H.M., Remais J., Fung M.C., Xu L., Sun S.S.M.. Food supply and food safety issues in China. Lancet. 2013; 381(9882): 2044-2053.
[6]
Meng Q.F., Hou P., Wu L., Chen X.P., Cui Z.L., Zhang F.S.. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Res. 2013; 143: 91-97.
[7]
Li Y.X., Zhang W.F., Ma L., Wu L., Shen J.B., Davies W.J., . An analysis of China’s grain production: looking back and looking forward. Food Energy Secur. 2014; 3(1): 19-32.
[8]
Nkonya E., Mirzabaev A., von Braun J.. Economics of land degradation and improvement: an introduction and overview. In: editor. Economics of land degradation and improvement—a global assessment for sustainable development. Berlin: Springer; 2016. p. 1-14.
[9]
Monfreda C., Ramankutty N., Foley J.A.. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles. 2008; 22(1): 1-19.
[10]
Gantzer C.J., Anderson S.H., Thompson A.L., Brown J.R.. Estimating soil erosion after 100 years of cropping on Sanborn Field. J Soil Water Conserv. 1990; 45(6): 641-644.
[11]
Randall G.W., Mulla D.J.. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J Environ Qual. 2001; 30(2): 337-344.
[12]
Cox T.S., Van Tassel D.L., Cox C.M., DeHaan L.R.. Progress in breeding perennial grains. Crop Pasture Sci. 2010; 61(7): 513-521.
[13]
Kantar M.B., Tyl C.E., Dorn K.M., Zhang X., Jungers J.M., Kaser J.M., . Perennial grain and oilseed crops. Annu Rev Plant Biol. 2016; 67: 703-729.
[14]
Colmer T.D., Munns R., Flowers T.J.. Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric. 2006; 45(11): 1425-1443.
[15]
Sanderson M.A., Adler P.R.. Perennial forages as second generation bioenergy crops. Int J Mol Sci. 2008; 9(5): 768-788.
[16]
Borrill P., Connorton J.M., Balk J., Miller A.J., Sanders D., Uauy C.. Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci. 2014; 5: 53.
[17]
Cooney D., Kim H., Quinn L., Lee M.S., Guo J., Chen S.L., . Switchgrass as a bioenergy crop in the Loess Plateau, China: potential lignocellulosic feedstock production and environmental conservation. J Integr Agric. 2017; 16(6): 1211-1226.
[18]
Cox T.S., Bender M., Picone C., Van Tassel D.L., Holland J.B., Brummer E.C., . Breeding perennial grain crops. Crit Rev Plant Sci. 2002; 21(2): 59-91.
[19]
Culman S.W., Snapp S.S., Ollenburger M., Basso B., DeHeen L.R.. Soil and water quality rapidly responds to the perennial grain Kernza wheatgrass. Agron J. 2013; 105(3): 735-744.
[20]
Zhao X.Q., Zhang T., Huang L.Y., Wu H.M., Hu F.Y., Zhang F., . Comparative metabolite profiling and hormone analysis of perennial and annual rice. J Plant Biol. 2012; 55(1): 73-80.
[21]
Zhang S.L., Wang W.S., Zhang J., Ting Z., Huang W.Q., Xu P.. The progression of perennial rice breeding and genetics research in China. In: editor. Perennial crops for food security. Proceedings of the FAO Expert Workshop. Rome: FAO; 2014. p. 27-38.
[22]
Zhang S.L., Hu J., Yang C.D., Liu H.T., Yang F., Zhou J.H., . Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in southern China and Laos. Field Crops Res. 2017; 207: 62-70.
[23]
Cox S., Nabukalu P., Paterson A.H., Kong W.Q., Nakasagga S.. Development of perennial grain sorghum. Sustainability. 2018; 10(1): 172.
[24]
Curwen-Mcadams C., Jones S.S.. Breeding perennial grain crops based on wheat. Crop Sci. 2017; 57(3): 1172-1188.
[25]
Davies C.L., Waugh D.L., Lefroy E.C.. Variation in seed yield and its components in the Australian native grass Microlaena stipoides as a guide to its potential as a perennial grain crop. Aust J Agric Res. 2005; 56(3): 309-316.
[26]
Bell L.W., Byrne F., Ewing M.A., Wade L.J.. A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agric Syst. 2008; 96(1–3): 166-174.
[27]
Bell L.W., Wade L.J., Ewing M.A.. Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci. 2010; 61(9): 679-690.
[28]
Kasem S., Waters D.L., Rice N., Shapter F.M., Henry R.J.. Whole grain morphology or Australian rice species. Plant Genet Resour. 2010; 8(1): 74-81.
[29]
Shapter F.M., Cross M., Ablett G., Malory S., Chivers I.H., King G.J., . High-throughput sequencing and mutagenesis to accelerate the domestication of Microlaena stipoides as a new food crop. PLoS One. 2013; 8(12): e82641.
[30]
Larkin P.J., Newell M.T.. Perennial wheat breeding: current germplasm and a way forward for breeding and global cooperation. In: editor. Perennial crops for food security. Proceedings of the FAO Expert Workshop. Rome: FAO; 2014. p. 39-53.
[31]
Suneson C.A., Sharkawy A.E., Hall W.E.. Progress in 25 years of perennial wheat development. Crop Sci. 1963; 3(5): 437-439.
[32]
Sun S.C.. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin. 1981; 7(1): 51-57. Chinese
[33]
Li H.J., Conner R.L., Murray T.D.. Resistance to soil-borne diseases of wheat: contributions from the wheatgrasses Thinopyrum intermedium and Th. ponticum. Can J Plant Sci. 2008; 88(1): 195-205.
[34]
DeHaan L.R., Wang S.W., Larson S.R., Cattani D.J., Zhang X.F., Kantarski T.. Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain. In: editor. Perennial crops for food security. Proceedings of the FAO Expert Workshop. Rome: FAO; 2014. p. 72-89.
[35]
Chen Q.. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res. 2005; 109(1–3): 350-359.
[36]
Li H., Wang X.. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics. 2009; 36(9): 557-565.
[37]
Gazza L., Galassi E., Ciccoritti R., Cacciatori P., Pogna N.E.. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet Resour Crop Evol. 2016; 63(2): 209-219.
[38]
Wagoner P.. Perennial grain new use for intermediate wheatgrass. J Soil Water Conserv. 1990; 45(1): 81-82.
[39]
Becker R., Wagoner P., Hanners G.D., Saunders R.M.. Compositional, nutritional and functional evaluation of intermediate wheatgrass (Thinopyrum intermedium). J Food Process Preserv. 1991; 15(1): 63-77.
[40]
Cao S., Xu H., Li Z., Wang X., Wang D., Zhang A., . Identification and characterization of a novel Ag. intermedium HMW-GS gene from T. aestivum-Ag. intermedium addition lines TAI-I series. J Cereal Sci. 2007; 45(3): 293-301.
[41]
Murphy K.M., Hoagland L.A., Reeves P.G., Baik B.K., Jones S.S.. Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renew Agric Food Syst. 2009; 24(4): 285-292.
[42]
Gelfand I., Sahajpal R., Zhang X., Izaurralde R.C., Gross K.L., Robertson G.P.. Sustainable bioenergy production from marginal lands in the US Midwest. Nature. 2013; 493(7433): 514-517.
[43]
Harmoney K.R.. Cool-season grass biomass in the southern mixed-grass prairie region of the USA. BioEnergy Res. 2015; 8(1): 203-210.
[44]
Jungers J.M., DeHaan L.R., Betts K.J., Sheaffer C.C., Wyse D.L.. Intermediate wheatgrass grain and forage yield responses to nitrogen fertilization. Agron J. 2017; 109(2): 462-472.
[45]
Newell M.T., Hayes R.C.. An initial investigation of forage production and feed quality of perennial wheat derivatives. Crop Pasture Sci. 2017; 68(12): 1141-1148.
[46]
Larkin P.J., Newell M.T., Hayes R.C., Aktar J., Norton M.R., Moroni S.J., . Progress in developing perennial wheats for grain and grazing. Crop Pasture Sci. 2014; 65(11): 1147-1164.
[47]
Wagoner P., Schaeffer J.R.. Perennial grain development: past efforts and potential for the future. Crit Rev Plant Sci. 1990; 9(5): 381-408.
[48]
Armstrong J.M.. Hybridization of Triticum and Agropyron: I. Crossing results and description of the first generation hybrids. Can J Res. 1936; 14c(5): 190-202.
[49]
Peto F.H.. Hybridization of Triticum and Agropyron: II. Cytology of the male parents and F1 generation. Can J Res. 1936; 14c(5): 203-214.
[50]
Smith D.C.. Intergenetic hybridization of Triticum and other grasses, principally Agropyron. J Hered. 1943; 34(7): 219-224.
[51]
Tsitsin N.V.. Remote hybridization as a method of creating new species and varieties of plants. Euphytica. 1965; 14(3): 326-330.
[52]
Scheinost P.L., Lammer D.L., Cai X.W., Murray T.D., Jones S.S.. Perennial wheat: the development of a sustainable cropping system for the US Pacific Northwest. Am J Altern Agric. 2001; 16(4): 147-151.
[53]
Schulz-Schaeffer J., Haller S.E.. Registration of montana-2 perennial × Agrotriticum intermediodurum Khizhnyak. Crop Sci. 1987; 27(4): 822-823.
[54]
Jones T.A., Zhang X.Y., Wang R.R.C.. Genome characterization of MT-2 perennial and OK-906 annual wheat × intermediate wheatgrass hybrids. Crop Sci. 1999; 39(4): 1041-1043.
[55]
Lammer D., Cai X., Arterburn M., Chatelain J., Murray T., Jones S.. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot. 2004; 55(403): 1715-1720.
[56]
Zhao H.B., Zhang Y.M., Shi C.L., Yan X.D., Tian C., Li Y.P., . Development and cytogenetic analysis of perennial wheat in cold region. Acta Agron Sin. 2012; 38(8): 1378-1386. Chinese
[57]
Abbo S.. Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 2014; 19(6): 351-360.
[58]
Hayes R.C., Newell M.T., DeHaan L.R., Murphy K.M., Crane S., Norton M.R., . Perennial cereal crops: an initial evaluation of wheat derivatives. Field Crops Res. 2012; 133: 68-89.
[59]
Dong Y.S., Zhou R.H., Xu S.J., Li L.H., Cauderon Y., Wang R.R.C.. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas. 1992; 116(1–2): 175-178.
[60]
Sun S.C.. Pursuit and exploration. Chinese
[61]
Sun Y., Sun S.C., Liu S.X., Yan G.Y., Guo Q.. Study on varieties breeding and selection of perennial wheat. Seed. 2011; 30(4): 21-26. Chinese
[62]
Li H.J., Cui L., Li H.L., Wang X.M., Murray T.D., Conner R.L., . Effective resources in wheat and wheat-derivatives for resistance to Heterodera filipjevi in China. Crop Sci. 2012; 52(3): 1209-1217.
[63]
Li Z., Li B., Tong Y.. The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genomics. 2008; 35(8): 451-456.
[64]
Lenser T., Theißen G.. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 2013; 18(12): 704-714.
[65]
DeHaan L.R., Van Tassel D.L., Anderson J.A., Asselin S.R., Barnes R., Baute G.J., . A pipeline strategy for grain crop domestication. Crop Sci. 2016; 56(3): 917-930.
[66]
Li Q., Li L., Yang X., Warburton M.L., Bai G., Dai J., . Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol. 2010; 10: 143.
[67]
Su Z., Hao C., Wang L., Dong Y., Zhang X.. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet. 2011; 122(1): 211-223.
[68]
Asp T., Byrne S., Gundlach H., Bruggmann R., Mayer K.F.X., Andersen J.R., . Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice. Mol Genet Genomics. 2011; 286(5–6): 433-437.
[69]
Fradkin M., Ferrari M.R., Ferreira V., Grassi E.M., Greizerstein E.J., Poggio L.. Chromosome and genome composition of a Triticum × Thinopyrum hybrid by classical and molecular cytogenetic techniques. Genet Resour Crop Evol. 2012; 59(2): 231-237.
[70]
Marti A., Qiu X., Schoenfuss T.C., Seetharaman K.. Characteristics of perennial wheatgrass (Thinopyrum intermedium) and refined wheat flour blends: impact on rheological properties. Cereal Chem. 2015; 92(5): 434-440.
[71]
Marti A., Bock J.E., Pagani M.A., Ismail B., Seetharaman K.. Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour. Food Chem. 2016; 194: 994-1002.
[72]
Cattani D.J.. Selection of a perennial grain for seed productivity across years: intermediate wheatgrass as a test species. Can J Plant Sci. 2016; 97(3): 516-524.
[73]
Zhang X.F., DeHaan L.R., Higgins L., Markowski T.W., Wyse D.L., Anderson J.A.. New insights into high-molecular-weight glutenin subunits and sub-genomes of the perennial crop Thinopyrum intermedium (Triticeae). J Cereal Sci. 2014; 59(2): 203-210.
[74]
Jauhar P.P.. Multidisciplinary approach to genome analysis in the diploid species, Thinopyrum bessarabicum and Th. elongatum (Lophopyrum elongatum), of the Triticeae. Theor Appl Genet. 1990; 80(4): 523-536.
[75]
Zhang X., Dong Y., Wang R.R.C.. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome. 1996; 39(6): 1062-1071.
[76]
DeHaan L.R., Van Tassel D.L.. Useful insights from evolutionary biology for developing perennial grain crops. Am J Bot. 2014; 101(10): 1801-1819.
[77]
Chen Q., Conner R.L., Li H.J., Graf R., Laroche A., Li Y.H., . Genomic characterization of new sources of resistance to both wheat streak mosaic virus and wheat curl mite in wheat–Thinopyrum partial amphiploids. J Genet Breed. 2003; 57: 155-164.
[78]
Ma X.F., Gustafson J.P.. Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot. 2008; 101(6): 825-832.
[79]
Sykes V.R., Allen F.L., DeSantis A.C., Saxton A.M., Bhandari H.S., West D.R., . Efficiency of spaced-plant selection in improving sward biomass and ethanol yield in switchgrass. Crop Sci. 2017; 57(1): 253-263.
[80]
Zhang X., Sallam A., Gao L., Kantarski T., Poland J., DeHaan L.R., . Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome. 2016; 9(1): 1-18.
[81]
Kantarski T., Larson S., Zhang X., DeHaan L., Borevitz J., Anderson J., . Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. Theor Appl Genet. 2017; 130(1): 137-150.
[82]
Araus J.L., Cairns J.E.. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014; 19(1): 52-61.
[83]
Pimentel D., Cerasale D., Stanley R.C., Perlman R., Newman E.M., Brent L.C., . Annual vs. perennial grain production. Agric Ecosyst Environ. 2012; 161: 1-9.
[84]
Weik L., Kaul H.P., Kübler E., Aufhammer W.. Grain yields of perennial grain crops in pure and mixed stands. J Agron Crop Sci. 2002; 188(5): 342-349.
[85]
Robinson M.D., Murray T.D.. Genetic variation of wheat streak mosaic virus in the United States Pacific Northwest. Phytopathology. 2013; 103(1): 98-104.
[86]
Jia J.Z., Li H.J., Zhang X.Y., Li Z.C., Qiu L.J.. Genomics-based plant germplasm research (GPGR). Crop J. 2017; 5(2): 166-174.
[87]
Lou H., Dong L., Zhang K., Wang D.W., Zhao M., Li Y., . High-throughput mining of E-genome-specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat. Mol Ecol Resour. 2017; 17(6): 1318-1329.
[88]
Wang R.R.C., Larson S.R., Jensen K.B.. Differential transferability of EST-SSR primers developed from the diploid species Pseudoroegneria spicata, Thinopyrum bessarabicum, and Thinopyrum elongatum. Genome. 2017; 60(6): 530-536.
[89]
Xu Y.B., Crouch J.H.. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 2008; 48(2): 391-407.
[90]
Watson A., Ghosh S., Williams M.J., Cuddy W.S., Simmonds J., Rey M.D., . Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants. 2018; 4: 23-29.
Acknowledgements

Financial support provided by the National Key Research and Development Project (2017YFD0101002), the Natural Science Foundation of Shanxi Province (201601D021128), the Postdoctoral Science Foundation of Shanxi Academy of Agricultural Sciences (YBSJJ1808), the CAAS Innovation Team (CAAS-GJHZ201700X), and the National Engineering Laboratory of Crop Molecular Breeding is gratefully appreciated.

Compliance with ethics guidelines

Lei Cui, Yongkang Ren, Timothy D. Murray, Wenze Yan, Qing Guo, Yuqi Niu, Yu Sun, and Hongjie Li declare that they have no conflict of interest or financial conflicts to disclose.

版权

2018 THE AUTHORS
PDF(1744 KB)

Accesses

Citation

Detail

段落导航
相关文章

/