大豆胞囊线虫抗性研究现状及其对大豆育种的启示

工程(英文) ›› 2018, Vol. 4 ›› Issue (4) : 534-541.

PDF(983 KB)
PDF(983 KB)
工程(英文) ›› 2018, Vol. 4 ›› Issue (4) : 534-541. DOI: 10.1016/j.eng.2018.07.009
研究论文
Research Crop Genetics and Breeding—Review

大豆胞囊线虫抗性研究现状及其对大豆育种的启示

作者信息 +

Current Research Status of Heterodera glycines Resistance and Its Implication on Soybean Breeding

Author information +
History +

Abstract

Heterodera glycines (i.e., soybean cyst nematode, SCN) is the most damaging nematode pest affecting soybean crop worldwide. This nematode is managed by means of crop rotation with selected resistant sources. With increasing reports of virulent SCN populations that are able to break the resistance within commonly used sources, there is an increasing need to find new sources of resistance or to broaden the resistance background. This review summarizes recent findings about the genes controlling SCN resistance in soybean, and about how these genes interact to confer resistance against SCN in soybean. It also provides an update on molecular mapping and molecular markers that can be used for the mass selection and differentiation of different resistance lines and cultivars in order to expedite conventional breeding programs. In-depth knowledge of SCN parasitism proteins and soybean resistance responses to the pathogen is critical for the diversification of resistant sources through gene modification, gene stacking, or incorporation of novel sources of resistance through backcrossing or genetic engineering.

Keywords

Soybean cyst nematode / Heterodera glycines / Resistance / Molecular breeding

引用本文

导出引用
. . Engineering. 2018, 4(4): 534-541 https://doi.org/10.1016/j.eng.2018.07.009

参考文献

[1]
Hymowitz T.. On the domestication of the soybean. Econ Bot. 1970; 249(4): 408-421.
[2]
Lee G.A., Crawford G.W., Liu L., Sasaki Y., Chen X.. Archaeological soybean (Glycine max) in East Asia: does size matter?. PLoS One. 2011; 6(11): e26720.
[3]
Liu X., Li J., Zhang D.. History and status of soybean cyst nematode in China. Int J Nematol. 1997; 7: 18-25.
[4]
Peng D., Pend H., Wu D., Huang W., Ye W., Cui J.. First report of soybean cyst nematode (Heterodera glycines) on soybean from Gansu and Ningxia, China. Plant Dis. 2016; 100: 229.
[5]
Wang D., Duan Y., Wang Y., Zhu X., Chen L., Liu X., . First report of soybean cyst nematode, Heterodera glycines, on soybean from Guangxi, Guizhou, and Jiangxi Provinces, China. Plant Dis. 2015; 99: 893.
[6]
Wang H., Zhao H., Chu D.. Genetic structure analysis of populations of the soybean cyst nematode, Heterodera glycines, from North China. Nematology. 2015; 17(5): 591-600.
[7]
Wang D. Distribution, virulence phenotypes and genetic structure of Heterodera glycines in China. In: Proceeding of 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016. p. S1.1–9.
[8]
Hori S.. Phytopathol notes. Sick soil of soybean caused by nematodes. J Plant Protect. 1916; 2: 927-930.
[9]
Winstead N.N., Skotland C.B., Sasser J.N.. Soybean cyst nematode in North Carolina. Plant Dis Rep. 1955; 39: 9-11.
[10]
Ichinohe M.. On the soybean nematode, Heterodera glycines n. sp. from Japan. Jpn J Appl Entomol Zool. 1952; 17: 1-4. Japanese
[11]
Koenning S.R., Wrather J.A.. Suppression of soybean yield potential in the continental United States from plant diseases estimated from 2006 to 2009. Plant Health Prog. 2010; Nov 22
[12]
Joos D.K., Esgar R.W., Henry B.R., Nafziger E.D.. Soybean variety test results in Illinois 2013. Report.
[13]
Tylka G.L., Mullaney M.P.. Soybean cyst nematode-resistant soybeans varieties for Iowa.
[14]
Riggs R.D., Schmitt D.P.. Complete characterization of the race scheme for Heterodera glycines. J Nematol. 1988; 20(3): 392-395.
[15]
Niblack T.L., Arelli P.R., Noel G.R., Opperman C.H., Orf J.H., Schmitt D.P., . A revised classification scheme for genetically diverse populations of Heterodera glycines. Soybean Sci. 2002; 34(4): 279-288.
[16]
Concibido V.C., Diers B.W., Arelli P.R.. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci. 2004; 44: 1121-1131.
[17]
Mitchum M.G., Wrather J.A., Heinz R.D., Shannon J.G., Danekas G.. Variability in distribution and virulence phenotypes of Heterodera glycines in Missouri during 2005. Plant Dis. 2007; 91: 1473-1476.
[18]
Niblack T.L., Colgrove A.L., Colgrove K., Bond J.P.. Shift in virulence of soybean cyst nematode is associated with use of resistance from PI 88788. Plant Health Prog. 2008; 18.
[19]
Zheng J., Li Y., Chen S.. Characterization of the virulence phenotypes of Heterodera glycines in Minnesota. J Nematol. 2006; 38(3): 383-390.
[20]
Acharya K., Tande C., Byamukarma E.. Determination of Heterodera glycines virulence phenotypes occurring in South Dakota. Plant Dis. 2016; 100: 2281-2286.
[21]
Chowdhury I, Yan GP, Plaisance A, Nelson B, Markell S, Helms TC, et al. Population diversity of soybean cyst nematode in North Dakota fields. In: Proceeding of 55th Annual Meeting of the Society of Nematologists; 2016 Jul 17–21; Montreal, QC, Canada; 2016. p. 68–9.
[22]
Chowdhury I.A., Yan G.P., Plaisance A.. Characterizing virulence phenotypes of soybean cyst nematode (Heterodera glycines) in infested fields of North Dakota. Phytopathology. 2017; 107(S1): 3.
[23]
Mitchum M.G.. Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology. 2016; 106: 1444-1450.
[24]
Hussey R.S., Grundler F.M.. Nematode parasitism of plants. In: editor. Proceedings of the physiology and biochemistry of free-living and plant parasitic nematodes. Oxford: CAB International Press; 1998. p. 213-243.
[25]
Atkinson H.J., Harris P.D.. Changes in nematode antigens recognized by monoclonal antibodies during early infections of soybean with cyst nematode Heterodera glycines. Parasitology. 1989; 98: 479-487.
[26]
Wyss U.. Observations on the feeding behavior of Heterodera schachtii throughout development, including events during molting. Fundam Appl Nematol. 1992; 15: 75-89.
[27]
Dong K., Opperman C.H.. Genetic analysis of parasitism in the soybean cyst nematode Heterodera glycines. Genetics. 1997; 146(4): 1311-1318.
[28]
Smant G., Stokkermans J.P., Yan Y., de Boer J.M., Baum T.J., Wang X., . Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA. 1998; 95(9): 4906-4911.
[29]
Wang X., Meyers D., Yan Y., Baum T., Smant G., Hussey R., . In planta localization of a β-1,4-endoglucanase secreted by Heterodera glycines. Mol Plant Microbe Interact. 1999; 12(1): 64-67.
[30]
De Boer J.M., Yan Y., Wang X., Smant G., Hussey R.S., Davis E.L., . Developmental expression of secretory β-1,4-endoglucanases in the subventral esophageal glands of Heterodera glycines. Mol Plant Microbe Interact. 1999; 12(8): 663-669.
[31]
De Boer J.M., Davis E.L., Hussey R.S., Popeijus H., Smant G., Baum T.J.. Cloning of a putative pectate lyase gene expressed in the subventral esophageal glands of Heterodera glycines. J Nematol. 2002; 34(1): 9-11.
[32]
Gao B., Allen R., Maier T., Davis E.L., Baum T.J., Hussey R.S.. Identification of a new -1,4-endoglucanase gene expressed in the esophageal subventral gland cells of Heterodera glycines. J Nematol. 2002; 34(1): 12-15.
[33]
Yan Y., Davis E.L.. Characterisation of guanylyl cyclase genes in the soybean cyst nematode, Heterodera glycines. Int J Parasitol. 2002; 32(1): 65-72.
[34]
Bekal S., Niblack T.L., Lambert K.N.. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Mol Plant Microbe Interact. 2003; 16(5): 439-446.
[35]
Olsen A.N., Skriver K.. Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends Plant Sci. 2003; 8(2): 55-57.
[36]
Guo X., Chronis D., De La Torre C.M., Smeda J., Wang X., Mitchum M.G.. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol J. 2015; 13(6): 801-810.
[37]
Bekal S., Domier L.L., Gonfa B., Lakhssassi N., Meksem K., Lambert K.N.. A SNARE-like protein and biotin are implicated in soybean cyst nematode virulence. PLoS One. 2015; 10(12): e0145601.
[38]
Peng D., Peng H., Huang W., Kong L.. Molecular characterization and functional analysis of the ran binding protein genes from soybean cyst nematodes Heterodera glycines. p. S1.7
[39]
Ross J.P.. Host-parasite relationship of the soybean cyst nematode in resistant soybean roots. Phytopathology. 1958; 48: 578-579.
[40]
Endo B.Y.. Feeding plug formation in soybean root infected with the soybean cyst nematode. Phytopatology. 1978; 68: 1022-1031.
[41]
Endo B.Y.. Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines. Revue Nétnatol. 1991; 14(1): 73-94. French
[42]
Endo B.Y.. Atlas on ultrastructure of infective juveniles of the soybean cyst nematode, Heterodera glycines.
[43]
Endo B.Y.. Cellular responses to infection. In: editor. Biology and management of the soybean cyst nematode. St. Paul: APS Press; 1992. p. 37-49.
[44]
Gheysen G., Fenoll C.. Gene expression in nematode feeding sites. Annu Rev Phytopathol. 2002; 40: 191-219.
[45]
Endo B.Y.. Histological responses of resistant and susceptible soybean varieties, and backcross progeny to entry development of Heterodera glycines. Phytopathology. 1965; 55: 375-381.
[46]
Jones M.G.K., Northcote D.H.. Nematode-induced syncytium—a multinucleate transfer cell. J Cell Sci. 1972; 10(3): 789-809.
[47]
Jones M.G.K.. The development and function of plant cells modified by endoparasitic nematodes. In: editor. New York: Academic Press; 1981. p. 255-279.
[48]
Acedo J.R., Dropkin V.H., Luedders V.D.. Nematode population attrition and histopathology of Heterodera glycines-soybean associations. J Nematol. 1984; 16(1): 48-56.
[49]
Riggs R.D., Kim K.S., Gipson I.. Ultrastructural changes in Peking soybeans infected with Heterodera glycines. Phytopathology. 1973; 63: 76-84.
[50]
Kim Y.H., Riggs R.D., Kim K.S.. Structural changes associated with resistance of soybean to Heterodera glycines. J Nematol. 1987; 19(2): 177-187.
[51]
Kim M.Y., Lee S., Van K., Kim T.H., Jeong S.C., Choi I.Y., . Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA. 2010; 107(51): 22032-22037.
[52]
Kim Y.H., Kim K.S., Riggs R.D.. Initial subcellular responses of susceptible and resistant soybeans infected with the soybean cyst nematode. Plant Pathol J. 2012; 28(4): 401-408.
[53]
Kim K.S., Riggs R.D.. Cytopathological reactions of resistant soybean plants to nematode invasion. In: editor. Biology and management of the soybean cyst nematode. St. Paul: APS Press; 1992. p. 157-168.
[54]
Kim Y.H., Kim K.S., Riggs R.D.. Differential subcellular responses in resistance soybeans infected with soybean cyst nematode races. Plant Pathol J. 2010; 26(2): 154-158.
[55]
Mahalingam R., Skorupska H.T.. Cytological expression of early response to infection by Heterodera glycines Ichinohe in resistant PI 437654 soybean. Genome. 1996; 39(5): 986-988.
[56]
Klink V.P., Hosseini P., Matsye P.D., Alkharouf N.W., Matthews B.F.. Differences in gene expression amplitude overlie a conserved transcriptomic program occurring between the rapid and potent localized resistant reaction at the syncytium of the Glycine max genotype Peking (PI 548402) as compared to the prolonged and potent resistant reaction of PI 88788. Plant Mol Biol. 2011; 75(1–2): 141-165.
[57]
Caldwell B.E., Brim C.A., Ross J.P.. Inheritance of resistance of soybeans to the cyst nematode, Heterodera glycines. Agron J. 1960; 52: 635-636.
[58]
Matson A.L., Williams L.F.. Evidence of fourth genes for resistance to the soybean cyst nematode. Crop Sci. 1965; 5: 477.
[59]
Rao-Arelli A.P.. Inheritance of resistance to Heterodera glycines race 3 in soybean accessions. Plant Dis. 1994; 78: 898-900.
[60]
Shannon JG, Anand SC. Basic and new development in breeding for resistance to soybean cyst nematode Heterodera glycines. In: Proceedings of the Thirtieth Brazilian Congress of Phytopathology; 1997 Aug 10–14; Pocos de Caldas, Brazil; 1997. p. 79–84.
[61]
Concibido V.C., Denny R.L., Boutin S.R., Hautea R., Orf J.H., Young N.D.. DNA marker analysis of loci underlying resistance to soybean cyst nematode (Heterodera glycines Ichinohe). Crop Sci. 1994; 34(1): 240-246.
[62]
Concibido V.C., Denny R., Lange D., Danesh D., Orf J., Young N.. Genome mapping on soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI88788 using DNA markers. Crop Sci. 1997; 37: 258-264.
[63]
Shoemaker R.C., Olson T.C.. Molecular linkage map of soybean (Glycine max L. Merr.). In: editor. Genetic maps: locus maps of complex genomes. New York: Cold Spring Harbor Laboratory Press; 1993. p. 6.131–8
[64]
Weisemann J.M., Matthews B.F., Devine T.E.. Molecular markers located proximal to the soybean cyst nematode resistance gene, Rhg4. Theor Appl Genet. 1992; 85(2–3): 136-138.
[65]
Meksem K., Pantazopoulos P., Njiti V.N., Hyten L.D., Arelli P.R., Lightfoot D.A.. “Forrest” resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet. 2001; 103(5): 710-717.
[66]
Cregan P.B., Mudge J., Fickus E.W., Danesh D., Denny R., Young N.D.. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the Rhg1 locus. Theor Appl Genet. 1999; 99: 811-818.
[67]
Mudge J., Concibido V.C., Denny R.L., Young N.D., Orf J.H.. Tools for analyzing soybean cyst nematode resistance and accompanying agronomic traits. Agronomy Abst. 1997; 85.
[68]
Brucker E., Carlson S., Wright E., Niblack T., Diers B.. Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor Appl Genet. 2005; 111(1): 44-49.
[69]
Schmutz J., Cannon S.B., Schlueter J., Ma J., Mitros T., Nelson W., . Genome sequence of the palaeopolyploid soybean. Nature. 2010; 463(7278): 178-183.
[70]
Cui Y., Barampuram S., Stacey M.G., Hancock C.N., Findley S., Mathieu M., . Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics. Plant Physiol. 2013; 161(1): 36-47.
[71]
Mathieu M., Winters E.K., Kong F., Wan J., Wang S., Eckert H., . Establishment of a soybean (Glycine max Merr. L) transposon-based mutagenesis repository. Planta. 2009; 229(2): 279-289.
[72]
Cooper J.L., Till B.J., Laport R.G., Darlow M.C., Kleffner J.M., Jamai A., . TILLING to detect induced mutations in soybean. BMC Plant Biol. 2008; 8: 9.
[73]
Kandoth P.K., Heinz R., Yeckel G., Gross N.W., Juvale P.S., Hill J., . A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max. BMC Res Notes. 2013; 6: 255.
[74]
Liu S., Kandoth P.K., Warren S.D., Yeckel G., Heinz R., Alden J., . A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature. 2012; 492(7428): 256-260.
[75]
Cook D.E., Lee T.G., Guo X., Melito S., Wang K., Bayless A.M., . Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science. 2012; 338(6111): 1206-1209.
[76]
Liu X., Liu S., Jamai A., Bendahmane A., Lightfoot D.A., Mitchum M.G., . Soybean cyst nematode resistance in soybean is independent of the Rhg4 locus LRR-RLK gene. Funct Integr Genomics. 2011; 11(4): 539-549.
[77]
Kim M., Hyten D.L., Bent A.F., Diers B.W.. Fine mapping of the SCN resistance locus rhg1-b from PI 88788. Plant Genome. 2010; 3: 81-89.
[78]
Melito S., Heuberger A.L., Cook D., Diers B.W., MacGuidwin A.E., Bent A.F.. A nematode demographics assay in transgenic roots reveals no significant impacts of the Rhg1 locus LRR-kinase on soybean cyst nematode resistance. BMC Plant Biol. 2010; 10: 104.
[79]
Cook D.E., Bayless A.M., Wang K., Guo X., Song Q., Jiang J., . Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol. 2014; 165(2): 630-647.
[80]
Lee T.G., Kumar I., Diers B.W., Hudson M.E.. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus. Mol Ecol. 2015; 24: 1774-1791.
[81]
Lee G.T.. Copy number variation mediated resistance to nematode. p. S1.6
[82]
Lakhssassi N., Liu S., Bekal S., Zhou Z., Colantonio V., Lambert K., . Characterization of the soluble NSF attachment protein gene family identifies two members involved in additive resistance to a plant pathogen. Sci Rep. 2017; 7: 45226.
[83]
Wu X.Y., Zhou G.C., Chen Y.X., Wu P., Liu L.W., Ma F.F., . Soybean cyst nematode resistance emerged via artificial selection of duplicated serine hydroxymethyltransferase genes. Front Plant Sci. 2016; 7: 998.
[84]
Meksem K., Liu S., Kandoth P., Lakhssassi N., Colantonio V., Kang J., . The GmSNAP18 is the Peking-type rhg1-a gene for resistance to soybean cyst nematode. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016.
[85]
Liu S., Kandoth P.K., Lakhssassi N., Kang J., Colantonio V., Heinz R., . The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nat Commun. 2017; 8: 14822.
[86]
Concibido V.C., Young N.D., Lange D.A., Denny R.L., Danesh D., Orf J.H.. Targeted comparative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode. Theor Appl Genet. 1996; 93(1–2): 234-241.
[87]
Davis E.L., Hussey R.S., Baum T.J., Bakker J., Schots A., Rosso M.N., . Nematode parasitism genes. Annu Rev Phytopathol. 2000; 38: 365-396.
[88]
Gardner M., Verna A., Mitchum M.G.. Emerging roles of cyst nematode effectors in exploiting plant cellular processes. Adv Botanical Res. 2015; 73: 259-291.
[89]
Kandoth P.K., Ithal N., Recknor J., Maier T., Nettleton D., Baum T.J., . The Soybean Rhg1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells. Plant Physiol. 2011; 155(4): 1960-1975.
[90]
Klink V.P., Overall C.C., Alkharouf N.W., MacDonald M.H., Matthews B.F.. Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta. 2007; 226(6): 1389-1409.
[91]
Matsye P.D., Kumar R., Hosseini P., Jones C.M., Tremblay A., Alkharouf N.W., . Mapping cell fate decisions that occur during soybean defense responses. Plant Mol Biol. 2011; 77(4–5): 513-528.
[92]
Matthews B.F., Beard H., MacDonald M.H., Kabir S., Youssef R.M., Hosseini P., . Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta. 2013; 237(5): 1337-1357.
[93]
Vaghchhipawala Z., Bassüner R., Clayton K., Lewers K., Shoemaker R., Mackenzie S.. Modulations in gene expression and mapping of genes associated with cyst nematode infection of soybean. Mol Plant Microbe Interact. 2001; 14(1): 42-54.
[94]
Klink V.P., Hosseini P., Matsye P.D., Alkharouf N.W., Matthews B.F.. Syncytium gene expression in Glycine max ([PI 88788]) roots undergoing a resistant reaction to the parasitic nematode Heterodera glycines. Plant Physiol Biochem. 2010; 48(2–3): 176-193.
[95]
Klink V.P., Overall C.C., Alkharouf N.W., MacDonald M.H., Matthews B.F.. A time-course comparative microarray analysis of an incompatible and compatible response by Glycine max (soybean) to Heterodera glycines (soybean cyst nematode) infection. Planta. 2007; 226(6): 1423-1447.
[96]
Mazarei M., Liu W., Al-Ahmad H., Arelli P.R., Pantalone V.R., Stewart CNJr. Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theor Appl Genet. 2011; 123(7): 1193-1206.
[97]
Lin J., Mazarei M., Zhao N., Zhu J.J., Zhuang X., Liu W., . Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnol J. 2013; 11(9): 1135-1145.
[98]
Lin J., Mazarei M., Zhao N., Hatcher C.N., Wuddineh W.A., Rudis M., . Transgenic soybean overexpressing GmSAMT1 exhibits resistance to multiple-HG types of soybean cyst nematode Heterodera glycines. Plant Biotechnol J. 2016; 14(11): 2100-2109.
[99]
Mahalingam R., Wang G., Knap H.T.. Polygalacturonase and polygalacturonase inhibitor protein: gene isolation and transcription in Glycine max-Heterodera glycines interactions. Mol Plant Microbe Interact. 1999; 12(6): 490-498.
[100]
Mazarei M., Puthoff D.P., Hart J.K., Rodermel S.R., Baum T.J.. Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection. Mol Plant Microbe Interact. 2002; 15(6): 577-586.
[101]
Huang J.S., Barker K.R.. Glyceollin I in soybean-cyst nematode interactions: spatial and temporal distribution in roots of resistant and susceptible soybeans. Plant Physiol. 1991; 96(4): 1302-1307.
[102]
Edens R.M., Anand S.C., Bolla R.I.. Enzymes of the phenylpropanoid pathway in soybean infected with Meloidogyne incognita or Heterodera glycines. J Nematol. 1995; 27(3): 292-303.
[103]
Bhattacharyya M.K., Ngaki M., Sahoo D., Wang B., Swaminathan S.. Expression of a receptor-like protein enhances resistance of soybean to multiple pathogen and pests including soybean cyst nematodes. p. S1.2
[104]
Concibido V.C., Young N.D., Lange D.A., Denny R.L., Orf J.H.. RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci. 1996; 36(6): 1643-1650.
[105]
Kim K.H., Yoon J.B., Park H.G., Park E.W., Kim Y.H.. Structural modifications and programmed cell death of chili pepper fruit related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology. 2004; 94(12): 1295-1304.
[106]
Li Y.H., Shi X.H., Li H.H., Reif J.C., Wang J.J., Liu Z.X., . Dissecting the genetic basis of resistance to soybean cyst nematode combining linkage and association mapping. Plant Genome. 2016; 9(2):
[107]
Zhang H., Li C., Davis E.L., Wang J., Griffin J.D., Kofsky J., . Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG type 2.5.7 in wild soybean (Glycine soja). Front Plant Sci. 2016; 7: 1214.
[108]
Han Y., Zhao X., Cao G., Wang Y., Li Y., Liu D., . Genetic characteristics of soybean resistance to HG type 0 and HG type 1.2.3.5.7 of the cyst nematode analyzed by genome-wide association mapping. BMC Genomics. 2015; 16(1): 598.
[109]
Vuong T.D., Sonah H., Meinhardt C.G., Deshmukh R., Kadam S., Nelson R.L., . Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics. 2015; 16: 593.
[110]
Bao Y., Vuong T., Meinhardt C., Tiffin P., Denny R., Chen S., . Potential of association mapping and genomic selection to explore PI 88788 derived soybean cyst nematode resistance. Plant Genome. 2014; 7(3):
[111]
Li Z., Tran D., Noe J., Meksem K., Arelli P.. Molecular breeding and novel QTL discovery for soybean cyst nematode resistance. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016.
[112]
Shi Z., Liu S., Noe J., Arelli P., Meksem K., Li Z.. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics. 2015; 16(1): 314.
[113]
Kadam S., Vuong T.D., Qiu D., Meinhardt C.G., Song L., Deshmukh R., . Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci. 2016; 242: 342-350.
[114]
Yu N., Lee T.G., Rosa D.P., Hudson M., Diers B.W.. Impact of Rhg1 copy number, type, and interaction with Rhg4 on resistance to Heterodera glycines in soybean. Theor Appl Genet. 2016; 129(12): 2403-2412.
[115]
Yue P., Arelli P.R., Sleper D.A.. Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B. Theor Appl Genet. 2001; 102(6–7): 921-928.
[116]
Yue P., Sleper D.A., Arelli P.R.. Mapping resistance to multiple races of Heterodera glycines in soybean PI 89772. Crop Sci. 2001; 41: 1589-1595.
[117]
Brzostowski L.. Stacking alleles from multiple sources to increase broad-spectrum genetic resistance to highly virulent soybean cyst nematode isolates. In: Proceedings of the 2016 Soybean Cyst Nematode Conference; 2016 Dec 13–15; Coral Gables, FL, USA. St. Paul: APS Press; 2016.
[118]
Kim M., Diers B.W.. Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Crop Sci. 2013; 53: 775-785.
[119]
Kim M., Hyten D.L., Niblack T.L., Diers B.W.. Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci. 2011; 51: 934-943.
Acknowledgements

The authors express their sincere appreciation to the North Dakota Soybean Council, USA, for their funding support for the soybean cyst nematode research program.

Compliance with ethics guidelines

Guiping Yan and Richard Baidoo declare that they have no conflict of interest or financial conflicts to disclose.

PDF(983 KB)

Accesses

Citation

Detail

段落导航
相关文章

/