下一代锂电池在能源化学工程方面的研究进展

工程(英文) ›› 2018, Vol. 4 ›› Issue (6) : 831-847.

PDF(4328 KB)
PDF(4328 KB)
工程(英文) ›› 2018, Vol. 4 ›› Issue (6) : 831-847. DOI: 10.1016/j.eng.2018.10.008
研究论文
Research Green Chemical Engineering—Review

下一代锂电池在能源化学工程方面的研究进展

作者信息 +

Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries

Author information +
History +

Abstract

Rechargeable lithium-ion batteries (LIBs) afford a profound impact on our modern daily life. However, LIBs are approaching the theoretical energy density, due to the inherent limitations of intercalation chemistry; thus, they cannot further satisfy the increasing demands of portable electronics, electric vehicles, and grids. Therefore, battery chemistries beyond LIBs are being widely investigated. Next-generation lithium (Li) batteries, which employ Li metal as the anode and intercalation or conversion materials as the cathode, receive the most intensive interest due to their high energy density and excellent potential for commercialization. Moreover, significant progress has been achieved in Li batteries attributed to the increasing fundamental understanding of the materials and reactions, as well as to technological improvement. This review starts by summarizing the electrolytes for next-generation Li batteries. Key challenges and recent progress in lithium-ion, lithium–sulfur, and lithium–oxygen batteries are then reviewed from the perspective of energy and chemical engineering science. Finally, possible directions for further development in Li batteries are presented. Next-generation Li batteries are expected to promote the sustainable development of human civilization.

Keywords

Lithium-ion batteries / Lithium–sulfur batteries / Lithium–oxygen batteries / Lithium metal / Solid-state batteries / Battery chemistry / Electrolyte

引用本文

导出引用
. . Engineering. 2018, 4(6): 831-847 https://doi.org/10.1016/j.eng.2018.10.008

参考文献

[1]
Tarascon J.M., Armand M.. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861): 359-367.
[2]
Schmuch R., Wagner R., Hörpel G., Placke T., Winter M.. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018; 3(4): 267-278.
[3]
Marom R., Amalraj S.F., Leifer N., Jacob D., Aurbach D.. A review of advanced and practical lithium battery materials. J Mater Chem. 2011; 21(27): 9938-9954.
[4]
Zu C.X., Li H.. Thermodynamic analysis on energy densities of batteries. Energy Environ Sci. 2011; 4(8): 2614-2624.
[5]
Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D.. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011; 4(9): 3243-3262.
[6]
Cheng X.B., Zhang R., Zhao C.Z., Zhang Q.. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117(15): 10403-10473.
[7]
Zhang X.Q., Cheng X.B., Zhang Q.. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces. 2018; 5(2): 1701097.
[8]
Yoo H.D., Markevich E., Salitra G., Sharon D., Aurbach D.. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today. 2014; 17(3): 110-121.
[9]
Zhao Y., Ding Y., Li Y., Peng L., Byon H.R., Goodenough J.B., . A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem Soc Rev. 2015; 44(22): 7968-7996.
[10]
Manthiram A., Yu X., Wang S.. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017; 2(4): 16103.
[11]
Whittingham M.S.. Lithium batteries and cathode materials. Chem Rev. 2004; 104(10): 4271-4301.
[12]
Nitta N., Wu F., Lee J.T., Yushin G.. Li-ion battery materials: present and future. Mater Today. 2015; 18(5): 252-264.
[13]
Huang H., Yin S.C., Nazar L.F.. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett. 2001; 4(10): A170-A172.
[14]
Wu F., Yushin G.. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci. 2017; 10(2): 435-459.
[15]
Bruce P.G., Freunberger S.A., Hardwick L.J., Tarascon J.M.. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2011; 11(1): 19-29.
[16]
Obrovac M.N., Chevrier V.L.. Alloy negative electrodes for Li-ion batteries. Chem Rev. 2014; 114(23): 11444-11502.
[17]
Kim H., Jeong G., Kim Y.U., Kim J.H., Park C.M., Sohn H.J.. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013; 42(23): 9011-9034.
[18]
Xu K.. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014; 114(23): 11503-11618.
[19]
Eftekhari A.. High-energy aqueous lithium batteries. Adv Energy Mater. 2018; 8(24): 1801156.
[20]
Yang C., Chen J., Qing T., Fan X., Sun W., von Cresce A., . 4.0 V aqueous Li-ion batteries. Joule. 2017; 1(1): 122-132.
[21]
Bin D., Wen Y., Wang Y., Xia Y.. The development in aqueous lithium-ion batteries. J Energy Chem. 2018; 27(6): 1521-1535.
[22]
Jin Y., Zhu B., Lu Z., Liu N., Zhu J.. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater. 2017; 7(23): 1700715.
[23]
Li P., Zhao G., Zheng X., Xu X., Yao C., Sun W., . Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Mater. 2018; 15: 422-446.
[24]
Hwang J.Y., Myung S.T., Sun Y.K.. Sodium-ion batteries: present and future. Chem Soc Rev. 2017; 46(12): 3529-3614.
[25]
Lu Y., Li L., Zhang Q., Niu Z., Chen J.. Electrolyte and interface engineering for solid-state sodium batteries. Joule. 2018; 2(9): 1747-1770.
[26]
Zhao C., Lu Y., Yue J., Pan D., Qi Y., Hu Y.S., . Advanced Na metal anodes. J Energy Chem. 2018; 27(6): 1584-1596.
[27]
Zhang C., Zhang L., Ding Y., Peng S., Guo X., Zhao Y., . Progress and prospects of next-generation redox flow batteries. Energy Storage Mater. 2018; 15: 324-350.
[28]
Cheng X.B., Yan C., Zhang X.Q., Liu H., Zhang Q.. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 2018; 3(7): 1564-1570.
[29]
Goodenough J.B., Kim Y.. Challenges for rechargeable Li batteries. Chem Mater. 2010; 22(3): 587-603.
[30]
Xu K.. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004; 104(10): 4303-4418.
[31]
Wang L., Ye Y., Chen N., Huang Y., Li L., Wu F., . Development and challenges of functional electrolytes for high-performance lithium–sulfur batteries. Adv Funct Mater. 2018; 28(38): 1800919.
[32]
Tikekar M.D., Choudhury S., Tu Z., Archer L.A.. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016; 1(9): 16114.
[33]
Younesi R., Veith G.M., Johansson P., Edström K., Vegge T.. Lithium salts for advanced lithium batteries: Li-metal, Li–O2, and Li–S. Energy Environ Sci. 2015; 8(7): 1905-1922.
[34]
Yamada Y., Yamada A.. Review—superconcentrated electrolytes for lithium batteries. J Electrochem Soc. 2015; 162(14): A2406-A2423.
[35]
Zhang X., Cheng X., Zhang Q.. Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem. 2016; 25(6): 967-984.
[36]
Aurbach D., Talyosef Y., Markovsky B., Markevich E., Zinigrad E., Asraf L., . Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta. 2004; 50(2–3): 247-254.
[37]
Zhang S.. A review on electrolyte additives for lithium-ion batteries. J Power Sources. 2006; 162(2): 1379-1394.
[38]
Verma P., Maire P., Novák P.. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010; 55(22): 6332-6341.
[39]
Xu W., Wang J., Ding F., Chen X., Nasybutin E., Zhang Y., . Lithium metal anodes for rechargeable batteries. Energy Environ Sci. 2014; 7(2): 513-537.
[40]
Manthiram A., Fu Y., Chung S.H., Zu C., Su Y.S.. Rechargeable lithium–sulfur batteries. Chem Rev. 2014; 114(23): 11751-11787.
[41]
Christensen J., Albertus P., Sanchez-Carrera R.S., Lohmann T., Kozinsky B., Liedtke R., . A critical review of Li/air batteries. J Electrochem Soc. 2012; 159(2): R1-30.
[42]
Suo L., Hu Y.S., Li H., Armand M., Chen L.. A new class of Solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013; 4(1): 1481.
[43]
Yamada Y., Furukawa K., Sodeyama K., Kikuchi K., Yaegashi M., Tateyama Y., . Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc. 2014; 136(13): 5039-5046.
[44]
Chen S., Zheng J., Mei D., Han K.S., Engelhard M.H., Zhao W., . High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater. 2018; 30(21): 1706102.
[45]
Fan X., Chen L., Borodin O., Ji X., Chen J., Hou S., . Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat Nanotechnol. 2018; 13(8): 715-722.
[46]
Suo L., Xue W., Gobet M., Greenbaum S.G., Wang C., Chen Y., . Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc Natl Acad Sci USA. 2018; 115(6): 1156-1161.
[47]
Zhang Z.Z., Shao Y.J., Lotsch B., Hu Y.S., Li H., Janek J., . New horizons for inorganic solid state ion conductors. Energy Environ Sci. 2018; 11(8): 1945-1976.
[48]
Takada K.. Progress in solid electrolytes toward realizing solid-state lithium batteries. J Power Sources. 2018; 394: 74-85.
[49]
Yue L., Ma J., Zhang J., Zhao J., Dong S., Liu Z., . All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016; 5: 139-164.
[50]
Zhu Y., He X., Mo Y.. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. 2015; 7(42): 23685-23693.
[51]
Han F., Zhu Y., He X., Mo Y., Wang C.. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater. 2016; 6(8): 1501590.
[52]
Zhang W., Leichtweiß T., Culver S.P., Koerver R., Das D., Weber D.A., . The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl Mater Interfaces. 2017; 9(41): 35888-35896.
[53]
Goodenough J.B., Singh P.. Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc. 2015; 162(14): A2387-A2392.
[54]
Luntz A.C., Voss J., Reuter K.. Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett. 2015; 6(22): 4599-4604.
[55]
Kerman K., Luntz A., Viswanathan V., Chiang Y.M., Chen Z.. Review—practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc. 2017; 164(7): A1731-A1744.
[56]
Han X., Gong Y., Fu K.K., He X., Hitz G.T., Dai J., . Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater. 2017; 16(5): 572-579.
[57]
Wu J., Ling S., Yang Q., Li H., Xu X., Chen L.. Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3–polypropylene (PP) based separator for Li-ion batteries. Chin Phys B. 2016; 25(7): 078204.
[58]
Li Y., Zhou W., Chen X., Lü X., Cui Z., Xin S., . Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proc Natl Acad Sci USA. 2016; 113(47): 13313-13317.
[59]
Luo W., Gong Y., Zhu Y., Fu K.K., Dai J., Lacey S.D., . Transition from superlithiophobicity to superlithiophilicity of Garnet solid-state electrolyte. J Am Chem Soc. 2016; 138(37): 12258-12262.
[60]
Zhang W., Richter F.H., Culver S.P., Leichtweiss T., Lozano J.G., Dietrich C., . Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl Mater Interfaces. 2018; 10(26): 22226-22236.
[61]
Wu B., Wang S., Lochala J., Desrochers D., Liu B., Zhang W., . The role of solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ Sci. 2018; 11(7): 1803-1810.
[62]
Li Y., Chen X., Dolocan A., Cui Z., Xin S., Xue L., . Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J Am Chem Soc. 2018; 140(20): 6448-6455.
[63]
Dai J., Yang C., Wang C., Pastel G., Hu L.. Interface engineering for Garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv Mater. 2018; 30: 1802068.
[64]
Li Y., Han J.T., Vogel S.C., Wang C.A.. The reaction of Li6.5La3Zr1.5Ta0.5O12 with water. Solid State Ion. 2015; 269: 57-61.
[65]
Li Y., Xu B., Xu H., Duan H., Lü X., Xin S., . Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed. 2017; 56(3): 753-756.
[66]
Camacho-Forero L.E., Balbuena P.B.. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J Power Sources. 2018; 396: 782-790.
[67]
Hofstetter K., Samson A.J., Narayanan S., Thangadurai V.. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J Power Sources. 2018; 390: 297-312.
[68]
Lang J., Qi L., Luo Y., Wu H.. High performance lithium metal anode: progress and prospects. Energy Storage Mater. 2017; 7: 115-129.
[69]
Peng H.J., Huang J.Q., Cheng X.B., Zhang Q.. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater. 2017; 7(24): 1700260.
[70]
Chung S.H., Chang C.H., Manthiram A.. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv Funct Mater. 2018; 28(28): 1801188.
[71]
Grande L., Paillard E., Hassoun J., Park J.B., Lee Y.J., Sun Y.K., . The lithium/air battery: still an emerging system or a practical reality?. Adv Mater. 2015; 27(5): 784-800.
[72]
Ma L., Yu T., Tzoganakis E., Amine K., Wu T., Chen Z., . Fundamental understanding and material challenges in rechargeable nonaqueous Li–O2 batteries: recent progress and perspective. Adv Energy Mater. 2018; 8(22): 1800348.
[73]
Peled E.. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc. 1979; 126(12): 2047-2051.
[74]
Lin D., Liu Y., Cui Y.. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017; 12(3): 194-206.
[75]
Wood K.N., Kazyak E., Chadwick A.F., Chen K.H., Zhang J.G., Thornton K., . Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent Sci. 2016; 2(11): 790-801.
[76]
Li Y., Li Y., Pei A., Yan K., Sun Y., Wu C.L., . Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science. 2017; 358(6362): 506-510.
[77]
Goren E., Chusid O., Aurbach D.. The application of in situ FTIR spectroscopy to the study of surface films formed on lithium and noble metals at low potentials in Li battery electrolytes. J Electrochem Soc. 1991; 138(5): L6-L9.
[78]
Odziemkowski M., Krell M., Irish D.E.. A Raman microprobe in situ and ex situ study of film formation at lithium/organic electrolyte interfaces. J Electrochem Soc. 1992; 139(11): 3052-3063.
[79]
Aurbach D., Moshkovich M.. A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J Electrochem Soc. 1998; 145(8): 2629-2639.
[80]
Smaran K.S., Shibata S., Omachi A., Ohama A., Tomizawa E., Kondo T.. Anion-dependent potential precycling effects on lithium deposition/dissolution reaction studied by an electrochemical quartz crystal microbalance. J Phys Chem Lett. 2017; 8(20): 5203-5208.
[81]
Shpigel N., Levi M.D., Sigalov S., Daikhin L., Aurbach D.. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring. Acc Chem Res. 2018; 51(1): 69-79.
[82]
Wood K.N., Noked M., Dasgupta N.P.. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2017; 2(3): 664-672.
[83]
Chandrashekar S., Trease N.M., Chang H.J., Du L.S., Grey C.P., Jerschow A.. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat Mater. 2012; 11(4): 311-315.
[84]
Liu Z., Lu P., Zhang Q., Xiao X., Qi Y., Chen L.Q.. A bottom-up formation mechanism of solid electrolyte interphase revealed by isotope-assisted time-of-flight secondary ion mass spectrometry. J Phys Chem Lett. 2018; 9(18): 5508-5514.
[85]
Cheng X., Zhang R., Zhao C., Wei F., Zhang J., Zhang Q.. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016; 3(3): 1500213.
[86]
Li Y., Huang W., Li Y., Pei A., Boyle D.T., Cui Y.. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule. 2018; 2(10): 2167-2177.
[87]
Chen X., Shen X., Li B., Peng H., Cheng X., Li B., . Ion-solvent complexes promote gas evolution from electrolytes on a sodium metal anode. Angew Chem Int Ed. 2018; 57(3): 734-737.
[88]
Chazalviel J.. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A. 1990; 42(12): 7355-7367.
[89]
Brissot C., Rosso M., Chazalviel J.N., Baudry P., Lascaud S.. In situ study of dendritic growth in lithium/PEO–salt/lithium cells. Electrochim Acta. 1998; 43(10–11): 1569-1574.
[90]
Zhang R., Li N., Cheng X., Yin Y., Zhang Q., Guo Y.. Advanced micro/nanostructures for lithium metal anodes. Adv Sci. 2017; 4(3): 1600445.
[91]
Markevich E., Salitra G., Chesneau F., Schmidt M., Aurbach D.. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2017; 2(6): 1321-1326.
[92]
Shkrob I.A., Marin T.W., Zhu Y., Abraham D.P.. Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry. J Phys Chem C. 2014; 118(34): 19661-19671.
[93]
Qian J., Henderson W.A., Xu W., Bhattacharya P., Engelhard M., Borodin O., . High rate and stable cycling of lithium metal anode. Nat Commun. 2015; 6(1): 6362.
[94]
Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., . “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015; 350(6263): 938-943.
[95]
Zhao C., Cheng X., Zhang R., Peng H., Huang J., Ran R., . Li2S5-based ternary-salt electrolyte for robust lithium metal anode. Energy Storage Mater. 2016; 3: 77-84.
[96]
Ding F., Xu W., Graff G.L., Zhang J., Sushko M.L., Chen X., . Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc. 2013; 135(11): 4450-4456.
[97]
Yan C., Cheng X., Yao Y., Shen X., Li B., Li W., . An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv Mater. 2018; 30: 1804461.
[98]
Qian J., Xu W., Bhattacharya P., Engelhard M., Henderson W.A., Zhang Y., . Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive. Nano Energy. 2015; 15: 135-144.
[99]
Yan C., Cheng X., Zhao C., Huang J., Yang S., Zhang Q.. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium–sulfur batteries: the role of polysulfides on lithium anode. J Power Sources. 2016; 327: 212-220.
[100]
Cheng X., Zhao M., Chen C., Pentecost A., Maleski K., Mathis T., . Nanodiamonds suppress the growth of lithium dendrites. Nat Commun. 2017; 8(1): 336.
[101]
Huang F., Ma G., Wen Z., Jin J., Xu S., Zhang J.. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J Mater Chem A. 2018; 6(4): 1612-1620.
[102]
Bogle X., Vazquez R., Greenbaum S., Cresce A., Xu K.. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J Phys Chem Lett. 2013; 4(10): 1664-1668.
[103]
Zhang X., Cheng X., Chen X., Yan C., Zhang Q.. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017; 27(10): 1605989.
[104]
Zhang X., Chen X., Cheng X., Li B., Shen X., Yan C., . Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chem Int Ed. 2018; 57(19): 5301-5305.
[105]
Yan C., Yao Y., Chen X., Cheng X., Zhang X., Huang J., . Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew Chem Int Ed. 2018; 57(43): 14055-14059.
[106]
Suo L., Oh D., Lin Y., Zhuo Z., Borodin O., Gao T., . How solid-electrolyte interphase forms in aqueous electrolytes. J Am Chem Soc. 2017; 139(51): 18670-18680.
[107]
Liu Y., Liu Q., Xin L., Liu Y., Yang F., Stach E.A., . Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy. 2017; 2(7): 17083.
[108]
Ye H., Xin S., Yin Y., Li J., Guo Y., Wan L.. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc. 2017; 139(16): 5916-5922.
[109]
Cheng X., Peng H., Huang J., Zhang R., Zhao C., Zhang Q.. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano. 2015; 9(6): 6373-6382.
[110]
Liu K., Pei A., Lee H.R., Kong B., Liu N., Lin D., . Lithium metal anodes with an adaptive “solid–liquid” interfacial protective layer. J Am Chem Soc. 2017; 139(13): 4815-4820.
[111]
Lu Q., He Y., Yu Q., Li B., Kaneti Y.V., Yao Y., . Dendrite-free, high-rate, long-life lithium-metal batteries with a 3D cross-linked network polymer electrolyte. Adv Mater. 2017; 29(13): 1604460.
[112]
Zhu B., Jin Y., Hu X., Zheng Q., Zhang S., Wang Q., . Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv Mater. 2017; 29(2): 1603755.
[113]
Hu Z., Zhang S., Dong S., Li W., Li H., Cui G., . Poly(ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes. Chem Mater. 2017; 29(11): 4682-4689.
[114]
Jing H., Kong L., Liu S., Li G., Gao X.. Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. J Mater Chem A. 2015; 3(23): 12213-12219.
[115]
Liang X., Pang Q., Kochetkov I.R., Sempere M.S., Huang H., Sun X., . A facile surface chemistry route to a stabilized lithium metal anode. Nat Energy. 2017; 2(9): 17119.
[116]
Liu W., Li W., Zhuo D., Zheng G., Lu Z., Liu K., . Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent Sci. 2017; 3(2): 135-140.
[117]
Tu Z., Zachman M.J., Choudhury S., Khan K.A., Zhao Q., Kourkoutis L.F., . Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases. Chem Mater. 2018; 30(16): 5655-5662.
[118]
Zhang X., Chen X., Xu R., Cheng X., Peng H., Zhang R., . Columnar lithium metal anodes. Angew Chem Int Ed. 2017; 56(45): 14207-14211.
[119]
Zheng G., Lee S.W., Liang Z., Lee H.W., Yan K., Yao H., . Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014; 9(8): 618-623.
[120]
Li N.W., Shi Y., Yin Y., Zeng X., Li J., Li C., . A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem Int Ed. 2018; 57(6): 1505-1509.
[121]
Zhao Q., Tu Z., Wei S., Zhang K., Choudhury S., Liu X., . Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries. Angew Chem Int Ed. 2018; 57(4): 992-996.
[122]
Xu R., Zhang X., Cheng X., Peng H., Zhao C., Yan C., . Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv Funct Mater. 2018; 28(8): 1705838.
[123]
Wang X., Zhang Y., Zhang X., Liu T., Lin Y., Li L., . Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries. ACS Appl Mater Interfaces. 2018; 10(29): 24791-24798.
[124]
Zhao C., Zhang X., Cheng X., Zhang R., Xu R., Chen P., . An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc Natl Acad Sci USA. 2017; 114(42): 11069-11074.
[125]
Zhang R., Cheng X., Zhao C., Peng H., Shi J., Huang J., . Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016; 28(11): 2155-2162.
[126]
Yang C., Yin Y., Zhang S., Li N., Guo Y.. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015; 6(1): 8058.
[127]
Yun Q., He Y., Lv W., Zhao Y., Li B., Kang F., . Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater. 2016; 28(32): 6932-6939.
[128]
Fan L., Li S., Liu L., Zhang W., Gao L., Fu Y., . Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater. 2018; 8: 1802350.
[129]
Cui J., Zhan T., Zhang K., Chen D.. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017; 28(12): 2171-2179.
[130]
Lu L., Zhang Y., Pan Z., Yao H., Zhou F., Yu S.. Lithiophilic Cu–Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 2017; 9: 31-38.
[131]
Liu Y., Lin D., Liang Z., Zhao J., Yan K., Cui Y.. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun. 2016; 7: 10992.
[132]
Jin C., Sheng O., Luo J., Yuan H., Fang C., Zhang W., . 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy. 2017; 37: 177-186.
[133]
Liang Z., Lin D., Zhao J., Lu Z., Liu Y., Liu C., . Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci USA. 2016; 113(11): 2862-2867.
[134]
Zhang R., Chen X., Chen X., Cheng X., Zhang X., Yan C., . Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed. 2017; 56(27): 7764-7768.
[135]
Jin C., Sheng O., Lu Y., Luo J., Yuan H., Zhang W., . Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA·cm−2. Nano Energy. 2018; 45: 203-209.
[136]
Schipper F., Erickson E.M., Erk C., Shin J.Y., Chesneau F.F., Aurbach D.. Review—recent advances and remaining challenges for lithium ion battery cathodes: I. nickel-rich, LiNixCoyMnzO2. J Electrochem Soc. 2017; 164(1): A6220-A6228.
[137]
Nayak P.K., Erickson E.M., Schipper F., Penki T.R., Munichandraiah N., Adelhelm P., . Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv Energy Mater. 2018; 8(8): 1702397.
[138]
Huang Q., Ma L., Liu A., Ma X., Li J., Wang J., . The reactivity of charged positive Li1–n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry. J Power Sources. 2018; 390: 78-86.
[139]
Yan C., Xu Y., Xia J., Gong C., Chen K.. Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi1/3Mn1/3Co1/3O2 cathode. J Energy Chem. 2016; 25(4): 659-666.
[140]
Zheng J., Engelhard M.H., Mei D., Jiao S., Polzin B.J., Zhang J.G., . Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat Energy. 2017; 2(3): 17012.
[141]
Liu L., Yin Y., Li J., Wang S., Guo Y., Wan L.. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater. 2018; 30(10): 1706216.
[142]
Liu Y., Lin D., Yuen P., Liu K., Xie J., Dauskardt R.H., . An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv Mater. 2017; 29(10): 1605531.
[143]
Cheng X.B., Hou T.Z., Zhang R., Peng H.J., Zhao C.Z., Huang J.Q., . Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater. 2016; 28(15): 2888-2895.
[144]
Davis L.A.. Clean energy perspective. Engineering. 2017; 3(6): 782.
[145]
Zhang Y.. Clean energy: opportunities and challenges. Engineering. 2017; 3(4): 431.
[146]
Ji X., Lee K.T., Nazar L.F.. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009; 8(6): 500-506.
[147]
Zhao M., Zhang Q., Huang J., Tian G., Nie J., Peng H., . Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat Commun. 2014; 5(1): 3410.
[148]
Li H., Sun L., Zhang Y., Tan T., Wang G., Bakenov Z.. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem. 2017; 26(6): 1276-1281.
[149]
Cheng X., Huang J., Zhang Q., Peng H., Zhao M., Wei F.. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy. 2014; 4: 65-72.
[150]
Hu G., Sun Z., Shi C., Fang R., Chen J., Hou P., . A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium–sulfur batteries. Adv Mater. 2017; 29(11): 29.
[151]
Li Z., Wu H., Lou X.. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci. 2016; 9: 3061.
[152]
Jayaprakash N., Shen J., Moganty S.S., Corona A., Archer L.A.. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed. 2011; 50(26): 5904-5908.
[153]
Peng H., Huang J., Zhao M., Zhang Q., Cheng X., Liu X., . Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium–sulfur batteries. Adv Funct Mater. 2014; 24(19): 2772-2781.
[154]
Huang J., Zhuang T., Zhang Q., Peng H., Chen C., Wei F.. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano. 2015; 9(3): 3002-3011.
[155]
Peng H., Wang D., Huang J., Cheng X., Yuan Z., Wei F., . Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv Sci. 2015; 3(1): 1500268.
[156]
Fang R., Chen K., Yin L., Sun Z., Li F., Cheng H.. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium–sulfur batteries. Adv Mater. 2018; 30: 1800863.
[157]
Xiao L., Cao Y., Xiao J., Schwenzer B., Engelhard M.H., Saraf L.V., . A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life. Adv Mater. 2012; 24(9): 1176-1181.
[158]
Ma G., Wen Z., Jin J., Lu Y., Rui K., Wu X., . Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. J Power Sources. 2014; 254: 353-359.
[159]
Chung S.H., Manthiram A.. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater. 2014; 26(43): 7352-7357.
[160]
Liu S., Hong X., Li Y., Xu J., Zheng C., Xie K.. A nanoporous nitrogen-doped graphene for high performance lithium sulfur batteries. Chin Chem Lett. 2017; 28(2): 412-416.
[161]
Zhou G., Paek E., Hwang G.S., Manthiram A.. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun. 2015; 6: 7760.
[162]
Zhang H., Zhao Z., Liu Y., Liang J., Hou Y., Zhang Z., . Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries. J Energy Chem. 2017; 26(6): 1282-1290.
[163]
Ai W., Zhou W., Du Z., Chen Y., Sun Z., Wu C., . Nitrogen and phosphorus codoped hierarchically porous carbon as an efficient sulfur host for Li–S batteries. Energy Storage Mater. 2017; 6: 112-118.
[164]
Li B.Q., Zhang S.Y., Kong L., Peng H.J., Zhang Q.. Porphyrin organic framework hollow spheres and their applications in lithium–sulfur batteries. Adv Mater. 2018; 30(23): 1707483.
[165]
Seh Z.W., Yu J.H., Li W., Hsu P.C., Wang H., Sun Y., . Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat Commun. 2014; 5: 5017.
[166]
Wei Seh Z., Li W., Cha J.J., Zheng G., Yang Y., McDowell M.T., . Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun. 2013; 4: 1331.
[167]
Li Z., Zhang N., Sun Y., Ke H., Cheng H.. Application of diatomite as an effective polysulfides adsorbent for lithium–sulfur batteries. J Energy Chem. 2017; 26(6): 1267-1275.
[168]
Li L., Chen L., Mukherjee S., Gao J., Sun H., Liu Z., . Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv Mater. 2017; 29(2): 1602734.
[169]
Fang R., Zhao S., Sun Z., Wang D.W., Amal R., Wang S., . Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium–sulfur batteries. Energy Storage Mater. 2018; 10: 56-61.
[170]
Chen K., Sun Z., Fang R., Shi Y., Cheng H.M., Li F.. Metal–organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium–sulfur batteries. Adv Funct Mater. 2018; 28(38): 1707592.
[171]
Peng H.J., Zhang G., Chen X., Zhang Z.W., Xu W.T., Huang J.Q., . Enhanced electrochemical kinetics on conductive polar mediators for lithium–sulfur batteries. Angew Chem Int Ed. 2016; 55(42): 12990-12995.
[172]
Hou T.Z., Xu W.T., Chen X., Peng H.J., Huang J.Q., Zhang Q.. Lithium bond chemistry in lithium–sulfur batteries. Angew Chem Int Ed. 2017; 56(28): 8178-8182.
[173]
Chen X, Hou T, Persson KA, Zhang Q. Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater Today 2018.
[174]
Chen X., Peng H.J., Zhang R., Hou T.Z., Huang J.Q., Li B., . An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides?. ACS Energy Lett. 2017; 2(4): 795-801.
[175]
Jin Z., Xie K., Hong X., Hu Z., Liu X.. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J Power Sources. 2012; 218: 163-167.
[176]
Freitag A., Langklotz U., Rost A., Stamm M., Ionov L.. Ionically conductive polymer/ceramic separator for lithium–sulfur batteries. Energy Storage Mater. 2017; 9: 105-111.
[177]
Chung S.H., Manthiram A.. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv Funct Mater. 2014; 24(33): 5299-5306.
[178]
Tang X, Sun Z, Yang H, Fang H, Wei F, Cheng HM, et al. Electrochemical process of sulfur in carbon materials from electrode thickness to interlayer. J Energy Chem 2018.
[179]
Qin J.L., Peng H.J., Huang J.Q., Zhang X.Q., Kong L., Xie J., . Solvent-engineered scalable production of polysulfide-blocking shields to enhance practical lithium–sulfur batteries. Small Methods. 2018; 2(8): 1800100.
[180]
Zhang Z.Y., Lai Y.Q., Zhang Z.A., Zhang K., Li J.. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta. 2014; 129: 55-61.
[181]
Xu R., Sun Y., Wang Y., Huang J., Zhang Q.. Two-dimensional vermiculite separator for lithium sulfur batteries. Chin Chem Lett. 2017; 28(12): 2235-2238.
[182]
Cheng X.B., Yan C., Huang J.Q., Li P., Zhu L., Zhao L., . The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 2017; 6: 18-25.
[183]
Aurbach D., Pollak E., Elazari R., Salitra G., Kelley C.S., Affinito J.. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc. 2009; 156(8): A694-A702.
[184]
Yuan Z., Peng H.J., Hou T.Z., Huang J.Q., Chen C.M., Wang D.W., . Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016; 16(1): 519-527.
[185]
Kong L., Chen X., Li B.Q., Peng H.J., Huang J.Q., Xie J., . A bifunctional perovskite promoter for polysulfide regulation toward stable lithium–sulfur batteries. Adv Mater. 2018; 30(2): 1705219.
[186]
Zhang Z.W., Peng H.J., Zhao M., Huang J.Q.. Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv Funct Mater. 2018; 28(38): 1707536.
[187]
Fang R., Zhao S., Sun Z., Wang D.W., Cheng H.M., Li F.. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater. 2017; 29(48): 1606823.
[188]
Blurton K.F., Sammells A.F.. Metal/air batteries: their status and potential—a review. J Power Sources. 1979; 4(4): 263-279.
[189]
Abraham K.M., Jiang Z.. A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc. 1996; 143(1): 1-5.
[190]
Ogasawara T., Débart A., Holzapfel M., Novák P., Bruce P.G.. Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc. 2006; 128(4): 1390-1393.
[191]
Feng N., He P., Zhou H.. Critical challenges in rechargeable aprotic Li–O2 batteries. Adv Energy Mater. 2016; 6(9): 1502303.
[192]
Tu Y., Deng D., Bao X.. Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. J Energy Chem. 2016; 25(6): 957-966.
[193]
Yang Y., Sun Q., Li Y.S., Li H., Fu Z.W.. Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J Electrochem Soc. 2011; 158(10): B1211-B1216.
[194]
Wang Y., Zhou H.. To draw an air electrode of a Li–air battery by pencil. Energy Environ Sci. 2011; 4(5): 1704-1707.
[195]
Li Y., Wang J., Li X., Liu J., Geng D., Yang J., . Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun. 2011; 13(7): 668-672.
[196]
Lu Y.C., Xu Z., Gasteiger H.A., Chen S., Hamad-Schifferli K., Shao-Horn Y.. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J Am Chem Soc. 2010; 132(35): 12170-12171.
[197]
Lu J., Li L., Park J.B., Sun Y.K., Wu F., Amine K.. Aprotic and aqueous Li–O2 batteries. Chem Rev. 2014; 114(11): 5611-5640.
[198]
Walker W., Giordani V., Uddin J., Bryantsev V.S., Chase G.V., Addison D.. A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J Am Chem Soc. 2013; 135(6): 2076-2079.
[199]
Veith G.M., Nanda J., Delmau L.H., Dudney N.J.. Influence of lithium salts on the discharge chemistry of Li–air cells. J Phys Chem Lett. 2012; 3(10): 1242-1247.
[200]
Nasybulin E., Xu W., Engelhard M.H., Nie Z., Burton S.D., Cosimbescu L., . Effects of electrolyte salts on the performance of Li–O2 batteries. J Phys Chem C. 2013; 117(6): 2635-2645.
[201]
Gunasekara I., Mukerjee S., Plichta E.J., Hendrickson M.A., Abraham K.M.. A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries. J Electrochem Soc. 2015; 162(6): A1055-A1066.
[202]
Xie B., Lee H.S., Li H., Yang X.Q., McBreen J., Chen L.Q.. New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem Commun. 2008; 10(8): 1195-1197.
[203]
Zhang S.S., Read J.. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery. J Power Sources. 2011; 196(5): 2867-2870.
[204]
Gao X., Chen Y., Johnson L., Bruce P.G.. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat Mater. 2016; 15(8): 882-888.
[205]
Chen Y., Freunberger S.A., Peng Z., Fontaine O., Bruce P.G.. Charging a Li–O2 battery using a redox mediator. Nat Chem. 2013; 5(6): 489-494.
[206]
Li Y., Wang X., Dong S., Chen X., Cui G.. Recent advances in non-aqueous electrolyte for rechargeable Li–O2 batteries. Adv Energy Mater. 2016; 6(18): 1600751.
[207]
Chen W., Gong Y.F., Liu J.H.. Recent advances in electrocatalysts for non-aqueous Li–O2 batteries. Chin Chem Lett. 2017; 28(4): 709-718.
[208]
Tang C., Titirici M.M., Zhang Q.. A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J Energy Chem. 2017; 26(6): 1077-1093.
[209]
Lu J., Lei Y., Lau K.C., Luo X., Du P., Wen J., . A nanostructured cathode architecture for low charge overpotential in lithium–oxygen batteries. Nat Commun. 2013; 4: 2383. Corrigendum in: Nat Commun 2014;5:3290
[210]
Cheng H., Scott K.. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J Power Sources. 2010; 195(5): 1370-1374.
[211]
Xiao J., Wang D., Xu W., Wang D., Williford R.E., Liu J., . Optimization of air electrode for Li/air batteries. J Electrochem Soc. 2010; 157(4): A487-A492.
[212]
Lu Y.C., Gasteiger H.A., Crumlin E., McGuire R., Shao-Horn Y.. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J Electrochem Soc. 2010; 157(9): A1016-A1025.
[213]
Guo Z., Zhou D., Dong X., Qiu Z., Wang Y., Xia Y.. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv Mater. 2013; 25(39): 5668-5672.
[214]
Débart A., Paterson A.J., Bao J., Bruce P.G.. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed. 2008; 47(24): 4521-4524.

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFA0202500 and 2016YFA0200102), the National Natural Science Foundation of China (21676160, 21776019, and 21825501), and the Tsinghua University Initiative Scientific Research Program. We thank Bo-Quan Li, Xin-Bing Cheng, Hong-Jie Peng, Xiang Chen, and Chong Yan for helpful discussion.
Compliance with ethics guidelines

Xue-Qiang Zhang, Chen-Zi Zhao, Jia-Qi Huang, and Qiang Zhang declare that they have no conflict of interest or financial conflicts to disclose.

版权

2018 THE AUTHORS
PDF(4328 KB)

Accesses

Citation

Detail

段落导航
相关文章

/