
下一代锂电池在能源化学工程方面的研究进展
Recent Advances in Energy Chemical Engineering of Next-Generation Lithium Batteries
Rechargeable lithium-ion batteries (LIBs) afford a profound impact on our modern daily life. However, LIBs are approaching the theoretical energy density, due to the inherent limitations of intercalation chemistry; thus, they cannot further satisfy the increasing demands of portable electronics, electric vehicles, and grids. Therefore, battery chemistries beyond LIBs are being widely investigated. Next-generation lithium (Li) batteries, which employ Li metal as the anode and intercalation or conversion materials as the cathode, receive the most intensive interest due to their high energy density and excellent potential for commercialization. Moreover, significant progress has been achieved in Li batteries attributed to the increasing fundamental understanding of the materials and reactions, as well as to technological improvement. This review starts by summarizing the electrolytes for next-generation Li batteries. Key challenges and recent progress in lithium-ion, lithium–sulfur, and lithium–oxygen batteries are then reviewed from the perspective of energy and chemical engineering science. Finally, possible directions for further development in Li batteries are presented. Next-generation Li batteries are expected to promote the sustainable development of human civilization.
Lithium-ion batteries / Lithium–sulfur batteries / Lithium–oxygen batteries / Lithium metal / Solid-state batteries / Battery chemistry / Electrolyte
[1] |
Tarascon J.M., Armand M.. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414(6861): 359-367.
|
[2] |
Schmuch R., Wagner R., Hörpel G., Placke T., Winter M.. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018; 3(4): 267-278.
|
[3] |
Marom R., Amalraj S.F., Leifer N., Jacob D., Aurbach D.. A review of advanced and practical lithium battery materials. J Mater Chem. 2011; 21(27): 9938-9954.
|
[4] |
Zu C.X., Li H.. Thermodynamic analysis on energy densities of batteries. Energy Environ Sci. 2011; 4(8): 2614-2624.
|
[5] |
Etacheri V., Marom R., Elazari R., Salitra G., Aurbach D.. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011; 4(9): 3243-3262.
|
[6] |
Cheng X.B., Zhang R., Zhao C.Z., Zhang Q.. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017; 117(15): 10403-10473.
|
[7] |
Zhang X.Q., Cheng X.B., Zhang Q.. Advances in interfaces between Li metal anode and electrolyte. Adv Mater Interfaces. 2018; 5(2): 1701097.
|
[8] |
Yoo H.D., Markevich E., Salitra G., Sharon D., Aurbach D.. On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today. 2014; 17(3): 110-121.
|
[9] |
Zhao Y., Ding Y., Li Y., Peng L., Byon H.R., Goodenough J.B.,
|
[10] |
Manthiram A., Yu X., Wang S.. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater. 2017; 2(4): 16103.
|
[11] |
Whittingham M.S.. Lithium batteries and cathode materials. Chem Rev. 2004; 104(10): 4271-4301.
|
[12] |
Nitta N., Wu F., Lee J.T., Yushin G.. Li-ion battery materials: present and future. Mater Today. 2015; 18(5): 252-264.
|
[13] |
Huang H., Yin S.C., Nazar L.F.. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett. 2001; 4(10): A170-A172.
|
[14] |
Wu F., Yushin G.. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ Sci. 2017; 10(2): 435-459.
|
[15] |
Bruce P.G., Freunberger S.A., Hardwick L.J., Tarascon J.M.. Li–O2 and Li–S batteries with high energy storage. Nat Mater. 2011; 11(1): 19-29.
|
[16] |
Obrovac M.N., Chevrier V.L.. Alloy negative electrodes for Li-ion batteries. Chem Rev. 2014; 114(23): 11444-11502.
|
[17] |
Kim H., Jeong G., Kim Y.U., Kim J.H., Park C.M., Sohn H.J.. Metallic anodes for next generation secondary batteries. Chem Soc Rev. 2013; 42(23): 9011-9034.
|
[18] |
Xu K.. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014; 114(23): 11503-11618.
|
[19] |
Eftekhari A.. High-energy aqueous lithium batteries. Adv Energy Mater. 2018; 8(24): 1801156.
|
[20] |
Yang C., Chen J., Qing T., Fan X., Sun W., von Cresce A.,
|
[21] |
Bin D., Wen Y., Wang Y., Xia Y.. The development in aqueous lithium-ion batteries. J Energy Chem. 2018; 27(6): 1521-1535.
|
[22] |
Jin Y., Zhu B., Lu Z., Liu N., Zhu J.. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv Energy Mater. 2017; 7(23): 1700715.
|
[23] |
Li P., Zhao G., Zheng X., Xu X., Yao C., Sun W.,
|
[24] |
Hwang J.Y., Myung S.T., Sun Y.K.. Sodium-ion batteries: present and future. Chem Soc Rev. 2017; 46(12): 3529-3614.
|
[25] |
Lu Y., Li L., Zhang Q., Niu Z., Chen J.. Electrolyte and interface engineering for solid-state sodium batteries. Joule. 2018; 2(9): 1747-1770.
|
[26] |
Zhao C., Lu Y., Yue J., Pan D., Qi Y., Hu Y.S.,
|
[27] |
Zhang C., Zhang L., Ding Y., Peng S., Guo X., Zhao Y.,
|
[28] |
Cheng X.B., Yan C., Zhang X.Q., Liu H., Zhang Q.. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 2018; 3(7): 1564-1570.
|
[29] |
Goodenough J.B., Kim Y.. Challenges for rechargeable Li batteries. Chem Mater. 2010; 22(3): 587-603.
|
[30] |
Xu K.. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004; 104(10): 4303-4418.
|
[31] |
Wang L., Ye Y., Chen N., Huang Y., Li L., Wu F.,
|
[32] |
Tikekar M.D., Choudhury S., Tu Z., Archer L.A.. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016; 1(9): 16114.
|
[33] |
Younesi R., Veith G.M., Johansson P., Edström K., Vegge T.. Lithium salts for advanced lithium batteries: Li-metal, Li–O2, and Li–S. Energy Environ Sci. 2015; 8(7): 1905-1922.
|
[34] |
Yamada Y., Yamada A.. Review—superconcentrated electrolytes for lithium batteries. J Electrochem Soc. 2015; 162(14): A2406-A2423.
|
[35] |
Zhang X., Cheng X., Zhang Q.. Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem. 2016; 25(6): 967-984.
|
[36] |
Aurbach D., Talyosef Y., Markovsky B., Markevich E., Zinigrad E., Asraf L.,
|
[37] |
Zhang S.. A review on electrolyte additives for lithium-ion batteries. J Power Sources. 2006; 162(2): 1379-1394.
|
[38] |
Verma P., Maire P., Novák P.. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010; 55(22): 6332-6341.
|
[39] |
Xu W., Wang J., Ding F., Chen X., Nasybutin E., Zhang Y.,
|
[40] |
Manthiram A., Fu Y., Chung S.H., Zu C., Su Y.S.. Rechargeable lithium–sulfur batteries. Chem Rev. 2014; 114(23): 11751-11787.
|
[41] |
Christensen J., Albertus P., Sanchez-Carrera R.S., Lohmann T., Kozinsky B., Liedtke R.,
|
[42] |
Suo L., Hu Y.S., Li H., Armand M., Chen L.. A new class of Solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun. 2013; 4(1): 1481.
|
[43] |
Yamada Y., Furukawa K., Sodeyama K., Kikuchi K., Yaegashi M., Tateyama Y.,
|
[44] |
Chen S., Zheng J., Mei D., Han K.S., Engelhard M.H., Zhao W.,
|
[45] |
Fan X., Chen L., Borodin O., Ji X., Chen J., Hou S.,
|
[46] |
Suo L., Xue W., Gobet M., Greenbaum S.G., Wang C., Chen Y.,
|
[47] |
Zhang Z.Z., Shao Y.J., Lotsch B., Hu Y.S., Li H., Janek J.,
|
[48] |
Takada K.. Progress in solid electrolytes toward realizing solid-state lithium batteries. J Power Sources. 2018; 394: 74-85.
|
[49] |
Yue L., Ma J., Zhang J., Zhao J., Dong S., Liu Z.,
|
[50] |
Zhu Y., He X., Mo Y.. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. 2015; 7(42): 23685-23693.
|
[51] |
Han F., Zhu Y., He X., Mo Y., Wang C.. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv Energy Mater. 2016; 6(8): 1501590.
|
[52] |
Zhang W., Leichtweiß T., Culver S.P., Koerver R., Das D., Weber D.A.,
|
[53] |
Goodenough J.B., Singh P.. Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc. 2015; 162(14): A2387-A2392.
|
[54] |
Luntz A.C., Voss J., Reuter K.. Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett. 2015; 6(22): 4599-4604.
|
[55] |
Kerman K., Luntz A., Viswanathan V., Chiang Y.M., Chen Z.. Review—practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc. 2017; 164(7): A1731-A1744.
|
[56] |
Han X., Gong Y., Fu K.K., He X., Hitz G.T., Dai J.,
|
[57] |
Wu J., Ling S., Yang Q., Li H., Xu X., Chen L.. Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3–polypropylene (PP) based separator for Li-ion batteries. Chin Phys B. 2016; 25(7): 078204.
|
[58] |
Li Y., Zhou W., Chen X., Lü X., Cui Z., Xin S.,
|
[59] |
Luo W., Gong Y., Zhu Y., Fu K.K., Dai J., Lacey S.D.,
|
[60] |
Zhang W., Richter F.H., Culver S.P., Leichtweiss T., Lozano J.G., Dietrich C.,
|
[61] |
Wu B., Wang S., Lochala J., Desrochers D., Liu B., Zhang W.,
|
[62] |
Li Y., Chen X., Dolocan A., Cui Z., Xin S., Xue L.,
|
[63] |
Dai J., Yang C., Wang C., Pastel G., Hu L.. Interface engineering for Garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv Mater. 2018; 30: 1802068.
|
[64] |
Li Y., Han J.T., Vogel S.C., Wang C.A.. The reaction of Li6.5La3Zr1.5Ta0.5O12 with water. Solid State Ion. 2015; 269: 57-61.
|
[65] |
Li Y., Xu B., Xu H., Duan H., Lü X., Xin S.,
|
[66] |
Camacho-Forero L.E., Balbuena P.B.. Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface. J Power Sources. 2018; 396: 782-790.
|
[67] |
Hofstetter K., Samson A.J., Narayanan S., Thangadurai V.. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium. J Power Sources. 2018; 390: 297-312.
|
[68] |
Lang J., Qi L., Luo Y., Wu H.. High performance lithium metal anode: progress and prospects. Energy Storage Mater. 2017; 7: 115-129.
|
[69] |
Peng H.J., Huang J.Q., Cheng X.B., Zhang Q.. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater. 2017; 7(24): 1700260.
|
[70] |
Chung S.H., Chang C.H., Manthiram A.. Progress on the critical parameters for lithium–sulfur batteries to be practically viable. Adv Funct Mater. 2018; 28(28): 1801188.
|
[71] |
Grande L., Paillard E., Hassoun J., Park J.B., Lee Y.J., Sun Y.K.,
|
[72] |
Ma L., Yu T., Tzoganakis E., Amine K., Wu T., Chen Z.,
|
[73] |
Peled E.. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc. 1979; 126(12): 2047-2051.
|
[74] |
Lin D., Liu Y., Cui Y.. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017; 12(3): 194-206.
|
[75] |
Wood K.N., Kazyak E., Chadwick A.F., Chen K.H., Zhang J.G., Thornton K.,
|
[76] |
Li Y., Li Y., Pei A., Yan K., Sun Y., Wu C.L.,
|
[77] |
Goren E., Chusid O., Aurbach D.. The application of in situ FTIR spectroscopy to the study of surface films formed on lithium and noble metals at low potentials in Li battery electrolytes. J Electrochem Soc. 1991; 138(5): L6-L9.
|
[78] |
Odziemkowski M., Krell M., Irish D.E.. A Raman microprobe in situ and ex situ study of film formation at lithium/organic electrolyte interfaces. J Electrochem Soc. 1992; 139(11): 3052-3063.
|
[79] |
Aurbach D., Moshkovich M.. A study of lithium deposition-dissolution processes in a few selected electrolyte solutions by electrochemical quartz crystal microbalance. J Electrochem Soc. 1998; 145(8): 2629-2639.
|
[80] |
Smaran K.S., Shibata S., Omachi A., Ohama A., Tomizawa E., Kondo T.. Anion-dependent potential precycling effects on lithium deposition/dissolution reaction studied by an electrochemical quartz crystal microbalance. J Phys Chem Lett. 2017; 8(20): 5203-5208.
|
[81] |
Shpigel N., Levi M.D., Sigalov S., Daikhin L., Aurbach D.. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring. Acc Chem Res. 2018; 51(1): 69-79.
|
[82] |
Wood K.N., Noked M., Dasgupta N.P.. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2017; 2(3): 664-672.
|
[83] |
Chandrashekar S., Trease N.M., Chang H.J., Du L.S., Grey C.P., Jerschow A.. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat Mater. 2012; 11(4): 311-315.
|
[84] |
Liu Z., Lu P., Zhang Q., Xiao X., Qi Y., Chen L.Q.. A bottom-up formation mechanism of solid electrolyte interphase revealed by isotope-assisted time-of-flight secondary ion mass spectrometry. J Phys Chem Lett. 2018; 9(18): 5508-5514.
|
[85] |
Cheng X., Zhang R., Zhao C., Wei F., Zhang J., Zhang Q.. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016; 3(3): 1500213.
|
[86] |
Li Y., Huang W., Li Y., Pei A., Boyle D.T., Cui Y.. Correlating structure and function of battery interphases at atomic resolution using cryoelectron microscopy. Joule. 2018; 2(10): 2167-2177.
|
[87] |
Chen X., Shen X., Li B., Peng H., Cheng X., Li B.,
|
[88] |
Chazalviel J.. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A. 1990; 42(12): 7355-7367.
|
[89] |
Brissot C., Rosso M., Chazalviel J.N., Baudry P., Lascaud S.. In situ study of dendritic growth in lithium/PEO–salt/lithium cells. Electrochim Acta. 1998; 43(10–11): 1569-1574.
|
[90] |
Zhang R., Li N., Cheng X., Yin Y., Zhang Q., Guo Y.. Advanced micro/nanostructures for lithium metal anodes. Adv Sci. 2017; 4(3): 1600445.
|
[91] |
Markevich E., Salitra G., Chesneau F., Schmidt M., Aurbach D.. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2017; 2(6): 1321-1326.
|
[92] |
Shkrob I.A., Marin T.W., Zhu Y., Abraham D.P.. Why bis(fluorosulfonyl)imide is a “magic anion” for electrochemistry. J Phys Chem C. 2014; 118(34): 19661-19671.
|
[93] |
Qian J., Henderson W.A., Xu W., Bhattacharya P., Engelhard M., Borodin O.,
|
[94] |
Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X.,
|
[95] |
Zhao C., Cheng X., Zhang R., Peng H., Huang J., Ran R.,
|
[96] |
Ding F., Xu W., Graff G.L., Zhang J., Sushko M.L., Chen X.,
|
[97] |
Yan C., Cheng X., Yao Y., Shen X., Li B., Li W.,
|
[98] |
Qian J., Xu W., Bhattacharya P., Engelhard M., Henderson W.A., Zhang Y.,
|
[99] |
Yan C., Cheng X., Zhao C., Huang J., Yang S., Zhang Q.. Lithium metal protection through in-situ formed solid electrolyte interphase in lithium–sulfur batteries: the role of polysulfides on lithium anode. J Power Sources. 2016; 327: 212-220.
|
[100] |
Cheng X., Zhao M., Chen C., Pentecost A., Maleski K., Mathis T.,
|
[101] |
Huang F., Ma G., Wen Z., Jin J., Xu S., Zhang J.. Enhancing metallic lithium battery performance by tuning the electrolyte solution structure. J Mater Chem A. 2018; 6(4): 1612-1620.
|
[102] |
Bogle X., Vazquez R., Greenbaum S., Cresce A., Xu K.. Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J Phys Chem Lett. 2013; 4(10): 1664-1668.
|
[103] |
Zhang X., Cheng X., Chen X., Yan C., Zhang Q.. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv Funct Mater. 2017; 27(10): 1605989.
|
[104] |
Zhang X., Chen X., Cheng X., Li B., Shen X., Yan C.,
|
[105] |
Yan C., Yao Y., Chen X., Cheng X., Zhang X., Huang J.,
|
[106] |
Suo L., Oh D., Lin Y., Zhuo Z., Borodin O., Gao T.,
|
[107] |
Liu Y., Liu Q., Xin L., Liu Y., Yang F., Stach E.A.,
|
[108] |
Ye H., Xin S., Yin Y., Li J., Guo Y., Wan L.. Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc. 2017; 139(16): 5916-5922.
|
[109] |
Cheng X., Peng H., Huang J., Zhang R., Zhao C., Zhang Q.. Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano. 2015; 9(6): 6373-6382.
|
[110] |
Liu K., Pei A., Lee H.R., Kong B., Liu N., Lin D.,
|
[111] |
Lu Q., He Y., Yu Q., Li B., Kaneti Y.V., Yao Y.,
|
[112] |
Zhu B., Jin Y., Hu X., Zheng Q., Zhang S., Wang Q.,
|
[113] |
Hu Z., Zhang S., Dong S., Li W., Li H., Cui G.,
|
[114] |
Jing H., Kong L., Liu S., Li G., Gao X.. Protected lithium anode with porous Al2O3 layer for lithium–sulfur battery. J Mater Chem A. 2015; 3(23): 12213-12219.
|
[115] |
Liang X., Pang Q., Kochetkov I.R., Sempere M.S., Huang H., Sun X.,
|
[116] |
Liu W., Li W., Zhuo D., Zheng G., Lu Z., Liu K.,
|
[117] |
Tu Z., Zachman M.J., Choudhury S., Khan K.A., Zhao Q., Kourkoutis L.F.,
|
[118] |
Zhang X., Chen X., Xu R., Cheng X., Peng H., Zhang R.,
|
[119] |
Zheng G., Lee S.W., Liang Z., Lee H.W., Yan K., Yao H.,
|
[120] |
Li N.W., Shi Y., Yin Y., Zeng X., Li J., Li C.,
|
[121] |
Zhao Q., Tu Z., Wei S., Zhang K., Choudhury S., Liu X.,
|
[122] |
Xu R., Zhang X., Cheng X., Peng H., Zhao C., Yan C.,
|
[123] |
Wang X., Zhang Y., Zhang X., Liu T., Lin Y., Li L.,
|
[124] |
Zhao C., Zhang X., Cheng X., Zhang R., Xu R., Chen P.,
|
[125] |
Zhang R., Cheng X., Zhao C., Peng H., Shi J., Huang J.,
|
[126] |
Yang C., Yin Y., Zhang S., Li N., Guo Y.. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun. 2015; 6(1): 8058.
|
[127] |
Yun Q., He Y., Lv W., Zhao Y., Li B., Kang F.,
|
[128] |
Fan L., Li S., Liu L., Zhang W., Gao L., Fu Y.,
|
[129] |
Cui J., Zhan T., Zhang K., Chen D.. The recent advances in constructing designed electrode in lithium metal batteries. Chin Chem Lett. 2017; 28(12): 2171-2179.
|
[130] |
Lu L., Zhang Y., Pan Z., Yao H., Zhou F., Yu S.. Lithiophilic Cu–Ni core-shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Mater. 2017; 9: 31-38.
|
[131] |
Liu Y., Lin D., Liang Z., Zhao J., Yan K., Cui Y.. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun. 2016; 7: 10992.
|
[132] |
Jin C., Sheng O., Luo J., Yuan H., Fang C., Zhang W.,
|
[133] |
Liang Z., Lin D., Zhao J., Lu Z., Liu Y., Liu C.,
|
[134] |
Zhang R., Chen X., Chen X., Cheng X., Zhang X., Yan C.,
|
[135] |
Jin C., Sheng O., Lu Y., Luo J., Yuan H., Zhang W.,
|
[136] |
Schipper F., Erickson E.M., Erk C., Shin J.Y., Chesneau F.F., Aurbach D.. Review—recent advances and remaining challenges for lithium ion battery cathodes: I. nickel-rich, LiNixCoyMnzO2. J Electrochem Soc. 2017; 164(1): A6220-A6228.
|
[137] |
Nayak P.K., Erickson E.M., Schipper F., Penki T.R., Munichandraiah N., Adelhelm P.,
|
[138] |
Huang Q., Ma L., Liu A., Ma X., Li J., Wang J.,
|
[139] |
Yan C., Xu Y., Xia J., Gong C., Chen K.. Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi1/3Mn1/3Co1/3O2 cathode. J Energy Chem. 2016; 25(4): 659-666.
|
[140] |
Zheng J., Engelhard M.H., Mei D., Jiao S., Polzin B.J., Zhang J.G.,
|
[141] |
Liu L., Yin Y., Li J., Wang S., Guo Y., Wan L.. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater. 2018; 30(10): 1706216.
|
[142] |
Liu Y., Lin D., Yuen P., Liu K., Xie J., Dauskardt R.H.,
|
[143] |
Cheng X.B., Hou T.Z., Zhang R., Peng H.J., Zhao C.Z., Huang J.Q.,
|
[144] |
Davis L.A.. Clean energy perspective. Engineering. 2017; 3(6): 782.
|
[145] |
Zhang Y.. Clean energy: opportunities and challenges. Engineering. 2017; 3(4): 431.
|
[146] |
Ji X., Lee K.T., Nazar L.F.. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater. 2009; 8(6): 500-506.
|
[147] |
Zhao M., Zhang Q., Huang J., Tian G., Nie J., Peng H.,
|
[148] |
Li H., Sun L., Zhang Y., Tan T., Wang G., Bakenov Z.. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J Energy Chem. 2017; 26(6): 1276-1281.
|
[149] |
Cheng X., Huang J., Zhang Q., Peng H., Zhao M., Wei F.. Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy. 2014; 4: 65-72.
|
[150] |
Hu G., Sun Z., Shi C., Fang R., Chen J., Hou P.,
|
[151] |
Li Z., Wu H., Lou X.. Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy Environ Sci. 2016; 9: 3061.
|
[152] |
Jayaprakash N., Shen J., Moganty S.S., Corona A., Archer L.A.. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed. 2011; 50(26): 5904-5908.
|
[153] |
Peng H., Huang J., Zhao M., Zhang Q., Cheng X., Liu X.,
|
[154] |
Huang J., Zhuang T., Zhang Q., Peng H., Chen C., Wei F.. Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium–sulfur batteries. ACS Nano. 2015; 9(3): 3002-3011.
|
[155] |
Peng H., Wang D., Huang J., Cheng X., Yuan Z., Wei F.,
|
[156] |
Fang R., Chen K., Yin L., Sun Z., Li F., Cheng H.. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium–sulfur batteries. Adv Mater. 2018; 30: 1800863.
|
[157] |
Xiao L., Cao Y., Xiao J., Schwenzer B., Engelhard M.H., Saraf L.V.,
|
[158] |
Ma G., Wen Z., Jin J., Lu Y., Rui K., Wu X.,
|
[159] |
Chung S.H., Manthiram A.. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater. 2014; 26(43): 7352-7357.
|
[160] |
Liu S., Hong X., Li Y., Xu J., Zheng C., Xie K.. A nanoporous nitrogen-doped graphene for high performance lithium sulfur batteries. Chin Chem Lett. 2017; 28(2): 412-416.
|
[161] |
Zhou G., Paek E., Hwang G.S., Manthiram A.. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun. 2015; 6: 7760.
|
[162] |
Zhang H., Zhao Z., Liu Y., Liang J., Hou Y., Zhang Z.,
|
[163] |
Ai W., Zhou W., Du Z., Chen Y., Sun Z., Wu C.,
|
[164] |
Li B.Q., Zhang S.Y., Kong L., Peng H.J., Zhang Q.. Porphyrin organic framework hollow spheres and their applications in lithium–sulfur batteries. Adv Mater. 2018; 30(23): 1707483.
|
[165] |
Seh Z.W., Yu J.H., Li W., Hsu P.C., Wang H., Sun Y.,
|
[166] |
Wei Seh Z., Li W., Cha J.J., Zheng G., Yang Y., McDowell M.T.,
|
[167] |
Li Z., Zhang N., Sun Y., Ke H., Cheng H.. Application of diatomite as an effective polysulfides adsorbent for lithium–sulfur batteries. J Energy Chem. 2017; 26(6): 1267-1275.
|
[168] |
Li L., Chen L., Mukherjee S., Gao J., Sun H., Liu Z.,
|
[169] |
Fang R., Zhao S., Sun Z., Wang D.W., Amal R., Wang S.,
|
[170] |
Chen K., Sun Z., Fang R., Shi Y., Cheng H.M., Li F.. Metal–organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium–sulfur batteries. Adv Funct Mater. 2018; 28(38): 1707592.
|
[171] |
Peng H.J., Zhang G., Chen X., Zhang Z.W., Xu W.T., Huang J.Q.,
|
[172] |
Hou T.Z., Xu W.T., Chen X., Peng H.J., Huang J.Q., Zhang Q.. Lithium bond chemistry in lithium–sulfur batteries. Angew Chem Int Ed. 2017; 56(28): 8178-8182.
|
[173] |
Chen X, Hou T, Persson KA, Zhang Q. Combining theory and experiment in lithium–sulfur batteries: current progress and future perspectives. Mater Today 2018.
|
[174] |
Chen X., Peng H.J., Zhang R., Hou T.Z., Huang J.Q., Li B.,
|
[175] |
Jin Z., Xie K., Hong X., Hu Z., Liu X.. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J Power Sources. 2012; 218: 163-167.
|
[176] |
Freitag A., Langklotz U., Rost A., Stamm M., Ionov L.. Ionically conductive polymer/ceramic separator for lithium–sulfur batteries. Energy Storage Mater. 2017; 9: 105-111.
|
[177] |
Chung S.H., Manthiram A.. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv Funct Mater. 2014; 24(33): 5299-5306.
|
[178] |
Tang X, Sun Z, Yang H, Fang H, Wei F, Cheng HM, et al. Electrochemical process of sulfur in carbon materials from electrode thickness to interlayer. J Energy Chem 2018.
|
[179] |
Qin J.L., Peng H.J., Huang J.Q., Zhang X.Q., Kong L., Xie J.,
|
[180] |
Zhang Z.Y., Lai Y.Q., Zhang Z.A., Zhang K., Li J.. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta. 2014; 129: 55-61.
|
[181] |
Xu R., Sun Y., Wang Y., Huang J., Zhang Q.. Two-dimensional vermiculite separator for lithium sulfur batteries. Chin Chem Lett. 2017; 28(12): 2235-2238.
|
[182] |
Cheng X.B., Yan C., Huang J.Q., Li P., Zhu L., Zhao L.,
|
[183] |
Aurbach D., Pollak E., Elazari R., Salitra G., Kelley C.S., Affinito J.. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc. 2009; 156(8): A694-A702.
|
[184] |
Yuan Z., Peng H.J., Hou T.Z., Huang J.Q., Chen C.M., Wang D.W.,
|
[185] |
Kong L., Chen X., Li B.Q., Peng H.J., Huang J.Q., Xie J.,
|
[186] |
Zhang Z.W., Peng H.J., Zhao M., Huang J.Q.. Heterogeneous/homogeneous mediators for high-energy-density lithium–sulfur batteries: progress and prospects. Adv Funct Mater. 2018; 28(38): 1707536.
|
[187] |
Fang R., Zhao S., Sun Z., Wang D.W., Cheng H.M., Li F.. More reliable lithium–sulfur batteries: status, solutions and prospects. Adv Mater. 2017; 29(48): 1606823.
|
[188] |
Blurton K.F., Sammells A.F.. Metal/air batteries: their status and potential—a review. J Power Sources. 1979; 4(4): 263-279.
|
[189] |
Abraham K.M., Jiang Z.. A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc. 1996; 143(1): 1-5.
|
[190] |
Ogasawara T., Débart A., Holzapfel M., Novák P., Bruce P.G.. Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc. 2006; 128(4): 1390-1393.
|
[191] |
Feng N., He P., Zhou H.. Critical challenges in rechargeable aprotic Li–O2 batteries. Adv Energy Mater. 2016; 6(9): 1502303.
|
[192] |
Tu Y., Deng D., Bao X.. Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. J Energy Chem. 2016; 25(6): 957-966.
|
[193] |
Yang Y., Sun Q., Li Y.S., Li H., Fu Z.W.. Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J Electrochem Soc. 2011; 158(10): B1211-B1216.
|
[194] |
Wang Y., Zhou H.. To draw an air electrode of a Li–air battery by pencil. Energy Environ Sci. 2011; 4(5): 1704-1707.
|
[195] |
Li Y., Wang J., Li X., Liu J., Geng D., Yang J.,
|
[196] |
Lu Y.C., Xu Z., Gasteiger H.A., Chen S., Hamad-Schifferli K., Shao-Horn Y.. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J Am Chem Soc. 2010; 132(35): 12170-12171.
|
[197] |
Lu J., Li L., Park J.B., Sun Y.K., Wu F., Amine K.. Aprotic and aqueous Li–O2 batteries. Chem Rev. 2014; 114(11): 5611-5640.
|
[198] |
Walker W., Giordani V., Uddin J., Bryantsev V.S., Chase G.V., Addison D.. A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J Am Chem Soc. 2013; 135(6): 2076-2079.
|
[199] |
Veith G.M., Nanda J., Delmau L.H., Dudney N.J.. Influence of lithium salts on the discharge chemistry of Li–air cells. J Phys Chem Lett. 2012; 3(10): 1242-1247.
|
[200] |
Nasybulin E., Xu W., Engelhard M.H., Nie Z., Burton S.D., Cosimbescu L.,
|
[201] |
Gunasekara I., Mukerjee S., Plichta E.J., Hendrickson M.A., Abraham K.M.. A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries. J Electrochem Soc. 2015; 162(6): A1055-A1066.
|
[202] |
Xie B., Lee H.S., Li H., Yang X.Q., McBreen J., Chen L.Q.. New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem Commun. 2008; 10(8): 1195-1197.
|
[203] |
Zhang S.S., Read J.. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery. J Power Sources. 2011; 196(5): 2867-2870.
|
[204] |
Gao X., Chen Y., Johnson L., Bruce P.G.. Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions. Nat Mater. 2016; 15(8): 882-888.
|
[205] |
Chen Y., Freunberger S.A., Peng Z., Fontaine O., Bruce P.G.. Charging a Li–O2 battery using a redox mediator. Nat Chem. 2013; 5(6): 489-494.
|
[206] |
Li Y., Wang X., Dong S., Chen X., Cui G.. Recent advances in non-aqueous electrolyte for rechargeable Li–O2 batteries. Adv Energy Mater. 2016; 6(18): 1600751.
|
[207] |
Chen W., Gong Y.F., Liu J.H.. Recent advances in electrocatalysts for non-aqueous Li–O2 batteries. Chin Chem Lett. 2017; 28(4): 709-718.
|
[208] |
Tang C., Titirici M.M., Zhang Q.. A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J Energy Chem. 2017; 26(6): 1077-1093.
|
[209] |
Lu J., Lei Y., Lau K.C., Luo X., Du P., Wen J.,
|
[210] |
Cheng H., Scott K.. Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J Power Sources. 2010; 195(5): 1370-1374.
|
[211] |
Xiao J., Wang D., Xu W., Wang D., Williford R.E., Liu J.,
|
[212] |
Lu Y.C., Gasteiger H.A., Crumlin E., McGuire R., Shao-Horn Y.. Electrocatalytic activity studies of select metal surfaces and implications in Li–air batteries. J Electrochem Soc. 2010; 157(9): A1016-A1025.
|
[213] |
Guo Z., Zhou D., Dong X., Qiu Z., Wang Y., Xia Y.. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li–O2 batteries. Adv Mater. 2013; 25(39): 5668-5672.
|
[214] |
Débart A., Paterson A.J., Bao J., Bruce P.G.. Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed. 2008; 47(24): 4521-4524.
|
Xue-Qiang Zhang, Chen-Zi Zhao, Jia-Qi Huang, and Qiang Zhang declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |