
植物愈伤组织培养的生物技术应用
Biotechnology Applications of Plant Callus Cultures
In ethnopharmacology, and especially in traditional Chinese medicine, medicinal plants have been used for thousands of years. Similarly, agricultural plants have been used throughout the history of mankind. The recent development of the genetic engineering of plants to produce plants with desirable features adds a new and growing dimension to humanity’s usage of plants. The biotechnology of plants has come of age and a plethora of bioengineering applications in this context have been delineated during the past few decades. Callus cultures and suspension cell cultures offer a wide range of usages in pharmacology and pharmacy (including Chinese medicine), as well as in agriculture and horticulture. This review provides a timely overview of the advancements that have been made with callus cultures in these scientific fields. Genetically modified callus cultures by gene technological techniques can be used for the synthesis of bioactive secondary metabolites and for the generation of plants with improved resistance against salt, draft, diseases, and pests. Although the full potential of callus plant culture technology has not yet been exploited, the time has come to develop and market more callus culture-based products.
Antibody production / Embryogenesis / Gene technology / Organogenesis / Pharmacology / Phytochemistry / Plant regeneration / Secondary metabolites / Stem cells
[1] |
Badea C, Basu SK. Impact of drought on plant proteome and metabolome. In: Proceedings of the UGC State Level Seminar on Emerging Trends in Contemporary Education: Implications for 21st Century; 2010 Apr 9; Howrah, India. p. 104–20.
|
[2] |
Zhao J., Davis L.C., Verpoorte R.. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 2005; 23(4): 283-333.
|
[3] |
Nascimento N.C., Fett-Neto A.G.. Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Mol Biol. 2010; 643: 1-13.
|
[4] |
Radman R., Bucke C., Keshavarz T.. Elicitor effects on Penicillium chrysogenum morphology in submerged cultures. Biotechnol Appl Biochem. 2004; 40(Pt 3): 229-233.
|
[5] |
Fritz V.A., Justen V.L., Bode A.M., Schuster T., Wang M.. Glucosinolate enhancement in cabbage induced by jasmonic acid application. HortScience. 2010; 45(8): 1188-1191.
|
[6] |
Kumar A.. Plant genetic transformation and molecular markers.
|
[7] |
Basu S.K., Dutta M., Goyal A., Bhowmik P.K., Kumar J., Nandy S.,
|
[8] |
Rao S.R., Ravishankar G.A.. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv. 2002; 20(2): 101-153.
|
[9] |
Bonner J.. Plant tissue cultures from a hormone point of view. Proc Natl Acad Sci USA. 1936; 22(6): 426-430.
|
[10] |
Thorpe T.A.. History of plant tissue culture. Mol Biotechnol. 2007; 37(2): 169-180.
|
[11] |
Georgiev M.I., Weber J., Maciuk A.. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol. 2009; 83(5): 809-823.
|
[12] |
Finer J.J., Kriebel H.B., Becwar M.R.. Initiation of embryogenic callus and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep. 1989; 8(4): 203-206.
|
[13] |
Chavez V.M., Litz R.E., Monroy M., Moon P.A., Vovides A.M.. Regeneration of Ceratozamia euryphyllidia (Cycadales, Gymnospermae) plants from embryogenic leaf cultures derived from mature-phase trees. Plant Cell Rep. 1998; 17(8): 612-616.
|
[14] |
Chen Y.C., Chang C., Chang W.C.. A reliable protocol for plant regeneration from callus culture of Phalaenopsis. In Vitro Cell Dev Biol: Plant. 2000; 36(5): 420-423.
|
[15] |
Burris J.N., Mann D.G.J., Joyce B.L., Stewart C.N.. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.). BioEnergy Res. 2009; 2(4): 267-274.
|
[16] |
Sugimoto K., Gordon S.P., Meyerowitz E.M.. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation?. Trends Cell Biol. 2011; 21(4): 212-218.
|
[17] |
Wang X.D., Nolan K.E., Irwanto R.R., Sheahan M.B., Rose R.J.. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot. 2011; 107(4): 599-609.
|
[18] |
Jiang F., Feng Z., Liu H., Zhu J.. Involvement of plant stem cells or stem cell-like cells in dedifferentiation. Front Plant Sci. 2015; 6: 1028.
|
[19] |
Su Y.H., Zhang X.S.. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signal Behav. 2009; 4(7): 574-576.
|
[20] |
Sijacic P., Liu Z.. Novel insights from live-imaging in shoot meristem development. J Integr Plant Biol. 2010; 52(4): 393-399.
|
[21] |
Ikeda M., Ohme-Takagi M.. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation. Front Plant Sci. 2014; 5: 427.
|
[22] |
Salvo S.A., Hirsch C.N., Buell C.R., Kaeppler S.M., Kaeppler H.F.. Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS ONE. 2014; 9(10): e111407.
|
[23] |
Murashige T., Skoog F.. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962; 15(3): 473-497.
|
[24] |
White P.R.. Potentially unlimited growth of excised plant callus in an artificial nutrient. Am J Bot. 1939; 26(2): 59-64.
|
[25] |
McCown L.G.B.. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Propag Soc. 1980; 30: 421-427.
|
[26] |
Granatek C.H., Cockerline A.W.. Callus formation versus differentiation of cultured barley embryos: hormonal and osmotic interactions. In Vitro. 1978; 14(2): 212-217.
|
[27] |
Lieber M.M.. New practical and theoretical approaches to the induction of morphogenesis from plant tumors in vitro using new types of plant growth regulators: towards constructive paradigms in agriculture and medicine. Theor Biol Forum. 2013; 106(1–2): 73-87.
|
[28] |
Perianez-Rodriguez J., Manzano C., Moreno-Risueno M.A.. Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin?. Front Plant Sci. 2014; 5: 219.
|
[29] |
Schell J., Koncz C., Spena A., Palme K., Walden R.. Genes involved in the control of growth and differentiation in plants. Gene. 1993; 135(1–2): 245-249.
|
[30] |
Karwasara V.S., Jain R., Tomar P., Dixit V.K.. Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cell Dev Biol: Plant. 2010; 46(4): 354-362.
|
[31] |
Staniszewska I., Krolicka A., Malinski E., Lojkowska E., Szafranek J.. Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb Technol. 2003; 33(5): 565-568.
|
[32] |
Nandagopal K., Halder M., Dash B., Nayak S., Jha S.. Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone. Curr Med Chem. 2018; 25(36): 4693-4717.
|
[33] |
Tomatsu M., Mujin T., Shibamoto N., Tashiro F., Ikuta A.. Production of aralin, a selective cytotoxic lectin against human transformed cells, in callus culture of Aralia elata. Planta Med. 2004; 70(5): 469-471.
|
[34] |
Hao H., Lei C., Dong Q., Shen Y., Chi J., Ye H.,
|
[35] |
Spollansky T.C., Pitta-Alvarezand S.I., Giulietti A.M.. Effect of jasmonic acid and aluminum on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electron J Biotechnol. 2000; 3(1): 31-32.
|
[36] |
Alves M.N., Sartoratto A., Trigo J.R.. Scopolamine in Brugmansia suaveolens (Solanaceae): defense, allocation, costs, and induced response. J Chem Ecol. 2007; 33(2): 297-309.
|
[37] |
Wiktorowska E., Dlugosz M., Janiszowska W.. Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzyme Microb Technol. 2010; 46(1): 14-20.
|
[38] |
Takeda R., Katoh K.. Growth and sesquiterpenoid production by Calypogeia granulata inoue cells in suspension culture. Planta. 1981; 151(6): 525-530.
|
[39] |
Pi Y., Jiang K., Hou R., Gong Y., Lin J., Sun X.,
|
[40] |
Chavan S.P., Lokhande V.H., Nitnaware K.M., Nikam T.D.. Influence of growth regulators and elicitors on cell growth and α-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl Microbiol Biotechnol. 2011; 89(6): 1701-1707.
|
[41] |
Purwianingsih W., Febri S., Kusdianti. Formation flavonoid secondary metabolites in callus culture of Chrysanthemum cinerariefolium as alternative provision medicine. AIP Conf Proc. 2016; 1708(1): 030005.
|
[42] |
Szabo E., Thelen A., Petersen M.. Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Rep. 1999; 18(6): 485-489.
|
[43] |
Kurosaki F., Yamashita A., Arisawa M.. Involvement of GTP-binding protein in the induction of phytoalexin biosynthesis in cultured carrot cells. Plant Sci. 2001; 161(2): 273-278.
|
[44] |
Putalun W., Udomsin O., Yusakul G., Juengwatanatrakul T., Sakamoto S., Tanaka H.. Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett. 2010; 32(5): 721-724.
|
[45] |
O’Dowd N.A., McCauley P.G., Richardson D.H.S., Wilson G.. Callus production, suspension culture and in vitro alkaloid yields of Ephedra. Plant Cell Tissue Organ Cult. 1993; 34(2): 149-155.
|
[46] |
Thoma I., Loeffler C., Sinha A.K., Gupta M., Krischke M., Steffan B.,
|
[47] |
Jeon M.H., Sung S.H., Huh H., Kim Y.C.. Ginkgolide B production in cultured cells derived from Ginkgo biloba L. leaves. Plant Cell Rep. 1995; 14(8): 501-504.
|
[48] |
Palazón J., Cusidó R.M., Bonfill M., Mallol A., Moyano E., Morales C.,
|
[49] |
Hu X., Neill S.J., Cai W., Tang Z.. Hydrogen peroxide and jasmonic acid mediate oligogalacturonic acid-induced saponin accumulation in suspension-cultured cells of Panax ginseng. Physiol Plant. 2003; 118(3): 414-421.
|
[50] |
Hu X., Neill S.J., Cai W., Tang Z.. Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct Plant Biol. 2003; 30(8): 901-907.
|
[51] |
Modolo L.V., Cunha F.Q., Braga M.R., Salgado I.. Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol. 2002; 130(3): 1288-1297.
|
[52] |
Hayashi H., Huang P., Inoue K.. Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol. 2003; 44(4): 404-411.
|
[53] |
Walker T.S., Pal Bais H., Vivanco J.M.. Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry. 2002; 60(3): 289-293.
|
[54] |
Murthy H.N., Kim Y.S., Park S.Y., Paek K.Y.. Hypericins: biotechnological production from cell and organ cultures. Appl Microbiol Biotechnol. 2014; 98(22): 9187-9198.
|
[55] |
Ionkova I., Sasheva P., Ionkov T., Momekov G.. Linum narbonense: a new valuable tool for biotechnological production of a potent anticancer lignan Justicidine B. Pharmacogn Mag. 2013; 9(33): 39-44.
|
[56] |
Mohagheghzadeh A., Dehshahri S., Hemmati S.. Accumulation of lignans by in vitro cultures of three Linum species. Z Naturforsch C. 2009; 64(1–2): 73-76.
|
[57] |
Mizukami H., Tabira Y., Ellis B.E.. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep. 1993; 12(12): 706-709.
|
[58] |
Yazaki K., Kunihisa M., Fujisaki T., Sato F.. Geranyl diphosphate: 4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon: cloning and characterization of a key enzyme in shikonin biosynthesis. J Biol Chem. 2002; 277(8): 6240-6246.
|
[59] |
dos Santos P.A., Amarante M.F., Pereira A.M., Bertoni B., França S.C., Pessoa C.,
|
[60] |
Bais H.P., Walker T.S., Schweizer H.P., Vivanco J.M.. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem. 2002; 40(11): 983-995.
|
[61] |
Wu J., Lin L.. Elicitor-like effects of low-energy ultrasound on plant (Panax ginseng) cells: induction of plant defense responses and secondary metabolite production. Appl Microbiol Biotechnol. 2002; 59(1): 51-57.
|
[62] |
Yaoya S., Kanho H., Mikami Y., Itani T., Umehara K., Kuroyanagi M.. Umbelliferone released from hairy root cultures of Pharbitis nil treated with copper sulfate and its subsequent glucosylation. Biosci Biotechnol Biochem. 2004; 68(9): 1837-1841.
|
[63] |
Ruyter C.M., Akram M., Illahi I., Stöckigt J.. Investigation of the alkaloid content of Rauwolfia serpentina roots from regenerated plants. Planta Med. 1991; 57(4): 328-330.
|
[64] |
Zhou X., Wu Y., Wang X., Liu B., Xu H.. Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biol Pharm Bull. 2007; 30(3): 439-442.
|
[65] |
Boldizsár I., Orbán N., Szűcs Z., Dános B.. Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes Pigments. 2008; 77(1): 249-257.
|
[66] |
Baumert A., Gröger D., Kuzovkina I.N., Reisch J.. Secondary metabolites produced by callus cultures of various Ruta species. Plant Cell Tissue Organ Cult. 1992; 28(2): 159-162.
|
[67] |
Wu C.F., Karioti A., Rohr D., Bilia A.R., Efferth T.. Production of rosmarinic acid and salvianolic acid B from callus culture of Salvia miltiorrhiza with cytotoxicity towards acute lymphoblastic leukemia cells. Food Chem. 2016; 201: 292-297.
|
[68] |
Yan Q., Hu Z., Tan R.X., Wu J.. Efficient production and recovery of diterpenoid tanshinones in Salvia miltiorrhiza hairy root cultures with in situ adsorption, elicitation and semi-continuous operation. J Biotechnol. 2005; 119(4): 416-424.
|
[69] |
Shi M., Kwok K.W., Wu J.Y.. Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnol Appl Biochem. 2007; 46(Pt 4): 191-196.
|
[70] |
Ge X., Wu J.. Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by beta-aminobutyric acid. Appl Microbiol Biotechnol. 2005; 68(2): 183-188.
|
[71] |
Liu C.Z., Saxena P.K.. Saussurea medusa cell suspension cultures for flavonoid production. Methods Mol Biol. 2009; 547: 53-59.
|
[72] |
Jung H.Y., Kang S.M., Kang Y.M., Kang M.J., Yun D.J., Bahk J.D.,
|
[73] |
Sánchez-Sampedro M.A., Fernández-Tárrago J., Corchete P.. Yeast extract and methyl jasmonate-induced silymarin production in cell cultures of Silybum marianum (L.) Gaertn. J Biotechnol. 2005; 119(1): 60-69.
|
[74] |
Schmeda-Hirschmann G., Jordan M., Gerth A., Wilken D.. Secondary metabolite content in rhizomes, callus cultures and in vitro regenerated plantlets of Solidago chilensis. Z Naturforsch C J Biosci. 2005; 60(1–2): 5-10.
|
[75] |
Tabata H.. Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol. 2004; 87: 1-23.
|
[76] |
Wang C., Wu J., Mei X.. Enhancement of taxol production and excretion in taxus chinensis cell culture by fungal elicitation and medium renewal. Appl Microbiol Biotechnol. 2001; 55(4): 404-410.
|
[77] |
Wang J.W., Wu J.Y.. Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol. 2005; 46(6): 923-930.
|
[78] |
Aziz A., Poinssot B., Daire X., Adrian M., Bézier A., Lambert B.,
|
[79] |
Fischer R., Emans N., Schuster F., Hellwig S., Drossard J.. Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol Appl Biochem. 1999; 30(Pt 2): 109-112.
|
[80] |
Hussain M.S., Fareed S., Ansari S., Rahman M.A., Ahmad I.Z., Saeed M.. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci. 2012; 4(1): 10-20.
|
[81] |
Deshpande A., Dhadi S.R., Hager E.J., Ramakrishna W.. Anticancer activity of rice callus suspension culture. Phytother Res. 2012; 26(7): 1075-1081.
|
[82] |
Rahman N., Dhadi S.R., Deshpande A., Ramakrishna W.. Rice callus suspension culture inhibits growth of cell lines of multiple cancer types and induces apoptosis in lung cancer cell line. BMC Complement Altern Med. 2016; 16(1): 427.
|
[83] |
Aravindaram K., Yang N.S.. Gene gun delivery systems for cancer vaccine approaches. Methods Mol Biol. 2009; 542: 167-178.
|
[84] |
Hellwig S., Drossard J., Twyman R.M., Fischer R.. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol. 2004; 22(11): 1415-1422.
|
[85] |
Firek S., Draper J., Owen M.R., Gandecha A., Cockburn B., Whitelam G.C.. Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol Biol. 1993; 23(4): 861-870.
|
[86] |
Torres E., Vaquero C., Nicholson L., Sack M., Stöger E., Drossard J.,
|
[87] |
Kapusta J., Modelska A., Figlerowicz M., Pniewski T., Letellier M., Lisowa O.,
|
[88] |
Kwon J.Y., Jeong S.H., Choi J.W., Pak Y.Y., Kim D.I.. Assessment of long-term cryopreservation for production of hCTLA4Ig in transgenic rice cell suspension cultures. Enzyme Microb Technol. 2013; 53(3): 216-222.
|
[89] |
De Muynck B., Navarre C., Boutry M.. Production of antibodies in plants: status after twenty years. Plant Biotechnol J. 2010; 8(5): 529-563.
|
[90] |
Rines H.W., Luke H.H.. Selection and regeneration of toxin-insensitive plants from tissue cultures of oats (Avena sativa) susceptible to Helminthosporium victoriae. Theor Appl Genet. 1985; 71(1): 16-21.
|
[91] |
Abe T., Futsuhara Y.. Genotypic variability for callus formation and plant regeneration in rice (Oryza sativa L.). Theor Appl Genet. 1986; 72(1): 3-10.
|
[92] |
Lu C., Vasil I.K.. Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximum Jacq. Theor Appl Genet. 1981; 59(5): 275-280.
|
[93] |
Brettell R.I.S., Wernicke W., Thomas E.. Embryogenesis from cultured immature inflorescences of Sorghum bicolor. Protoplasma. 1980; 104(1–2): 141-148.
|
[94] |
Ahloowalia B.S.. Plant regeneration from callus culture in wheat. Crop Sci. 1982; 22(2): 405-410.
|
[95] |
Sears R.G., Deckard E.L.. Tissue culture variability in wheat: callus induction and plant regeneration. Crop Sci. 1982; 22(3): 546-550.
|
[96] |
Maddock S.E., Lancester V.A., Risiott R., Franklin J.. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum). J Exp Bot. 1983; 34(7): 915-926.
|
[97] |
Özgen M., Türet M., Özcan S., Sancak C.. Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes. Plant Breed. 1996; 115(6): 455-458.
|
[98] |
Özgen M., Türet M., Altınok S., Sancak C.. Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes. Plant Cell Rep. 1998; 18(3–4): 331-335.
|
[99] |
Green C.E., Phillips R.L.. Plant regeneration from tissue cultures of maize. Crop Sci. 1975; 15(3): 417-421.
|
[100] |
Armstrong C.L., Green C.E.. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta. 1985; 164(2): 207-214.
|
[101] |
Huang X.Q., Wei Z.M.. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea Mays L.). Plant Cell Rep. 2004; 22(11): 793-800.
|
[102] |
Novak F.J.. Phenotype and cytological status of plants regenerated from callus cultures of Allium sativum L. Z Pflanzenzücht. 1980; 84(3): 250-260.
|
[103] |
Pontaroli A.C., Camadro E.L.. Plant regeneration after long-term callus culture in clones of Asparagus officinalis L. Biocell. 2005; 29(3): 313-317.
|
[104] |
Saunders J.W., Doley W.P.. One step shoot regeneration from callus of whole plant leaf explants of sugarbeet lines and a somaclonal variant for in vitro behavior. J Plant Physiol. 1986; 124(5): 473-479.
|
[105] |
Keller W.A., Armstrong K.C.. Embryogenesis and plant regeneration in Brassica napus anther cultures. Can J Bot. 1977; 55(10): 1383-1388.
|
[106] |
Jain R.K., Chowdhury J.B., Sharma D.R., Friedt W.. Genotypic and media effects on plant regeneration from cotyledon explant cultures of some Brassica species. Plant Cell Tissue Organ Cult. 1988; 14(3): 197-206.
|
[107] |
Barna K.S., Wakhlu A.K.. Somatic embryogenesis and plant regeneration from callus cultures of chickpea (Cicer arietinum L.). Plant Cell Rep. 1993; 12(9): 521-524.
|
[108] |
Kartha K.K., Pahl K., Leung N.L., Mroginski L.A.. Plant regeneration from meristems of grain legumes: soybean, cowpea, peanut, chickpea, and bean. Can J Bot. 1981; 59(9): 1671-1679.
|
[109] |
Barwale U.B., Kerns H.R., Widholm J.M.. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta. 1986; 167(4): 473-481.
|
[110] |
Wright M.S., Williams M.H., Pierson P.E., Carnes M.G.. Initiation and propagation of Glycine max L. Merr.: plants from tissue-cultured epicotyls. Plant Cell Tissue Organ Cult. 1987; 8(1): 83-90.
|
[111] |
Liu J.R., Cantliffe D.J.. Somatic embryogenesis and plant regeneration in tissue cultures of sweet potato (Ipomea batatas Poir.). Plant Cell Rep. 1984; 3(3): 112-115.
|
[112] |
Bhatia P., Ashwath N., Senaratna T., Midmore D.. Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tissue Organ Cult. 2004; 78(1): 1-21.
|
[113] |
Malmberg R.L.. Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta. 1979; 146(2): 243-244.
|
[114] |
Mathews H.. Morphogenetic responses from in vitro cultured seedling explants of mung bean (Vigna radiata L. Wilczek). Plant Cell Tissue Organ Cult. 1987; 11(3): 233-240.
|
[115] |
Kackar A., Bhat S.R., Chandel K.P.S., Malik S.K.. Plant regeneration via somatic embryogenesis in ginger. Plant Cell Tissue Organ Cult. 1993; 32(3): 289-292.
|
[116] |
Fitch M.M.M.. High frequency somatic embryogenesis and plant regeneration from papaya hypocotyl callus. Plant Cell Tissue Organ Cult. 1993; 32(2): 205-212.
|
[117] |
Karunaratne S., Periyapperuma K.. Culture of immature embryos of coconut, Cocos nucifera L.: callus proliferation and somatic embryogenesis. Plant Sci. 1989; 62(2): 247-253.
|
[118] |
Nehra N.S., Stushnoff C., Kartha K.K.. Regeneration of plants from immature leaf-derived callus of strawberry (Fragaria × ananassa). Plant Sci. 1990; 66(1): 119-126.
|
[119] |
Nehra N.S., Kartha K.K., Stushnott C., Giles K.L.. The influence of plant growth regulator concentrations and callus age on somaclonal variation in callus culture regenerants of strawberry. Plant Cell Tissue Organ Cult. 1992; 29(3): 257-268.
|
[120] |
Williams D.J., McHughen A.. Plant regeneration of the legume Lens culinaris Medik. (lentil) in vitro. Plant Cell Tissue Organ Cult. 1986; 7(2): 149-153.
|
[121] |
Hammerschlag F.A., Bauchan G., Scorza R.. Regeneration of peach plants from callus derived from immature embryos. Theor Appl Genet. 1985; 70(3): 248-251.
|
[122] |
Heinz D.J., Mee G.W.P.. Plant differentiation from callus tissue of Saccharum species. Crop Sci. 1969; 9(3): 346-348.
|
[123] |
Ho W.J., Vasil I.K.. Somatic embryogenesis in sugarcane (Saccharum officinarum L.): growth and plant regeneration from embryogenic cell suspension cultures. Ann Bot. 1983; 51(6): 719-726.
|
[124] |
Phillips G.C., Collins G.B.. In vitro tissue culture of selected legumes and plant regeneration from callus cultures of red glover. Crop Sci. 1979; 19(1): 59-64.
|
[125] |
Gresshoff P.M.. In vitro culture of white glover: callus, suspension, protoplast culture, and plant regeneration. Bot Gaz. 1980; 141(2): 157-164.
|
[126] |
Yeh M.L., Chang W.C.. Plant regeneration through somatic embryogenesis in callus culture of green bamboo (Bambusa oldhamii Munro). Theor Appl Genet. 1986; 73(2): 161-163.
|
[127] |
Mariotti D., Arcioni S.. Callus culture of Coronilla varia L. (crownvetch): plant regeneration through somatic embryogenesis. Plant Cell Tissue Organ Cult. 1983; 2(2): 103-110.
|
[128] |
Brettell R.I.S., Ingram D.S.. Tissue culture in the production of novel disease-resistant crop plants. Biol Rev Camb Philos Soc. 1979; 54(3): 329-345.
|
[129] |
van den Bulk R.W.. Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review. Euphytica. 1991; 56(3): 269-285.
|
[130] |
Jain S.M.. Tissue culture-derived variation in crop improvement. Euphytica. 2001; 118(2): 153-166.
|
[131] |
Ben-Hayyim G., Goffer Y.. Plantlet regeneration from a NaCl-selected salt-tolerant callus culture of Shamouti orange (Citrus sinensis L. Osbeck). Plant Cell Rep. 1989; 7(8): 680-683.
|
[132] |
Bower R., Birch R.G.. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 1992; 2(3): 409-416.
|
[133] |
Gallo-Meagher M., Irvine J.E.. Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop Sci. 1996; 36(5): 1367-1374.
|
[134] |
Bahgat S., Shabban O.A., El-Shihy O., Lightfoot D.A., El-Shemy H.A.. Establishment of the regeneration system for Vicia faba L. Curr Issues Mol Biol. 2009; 11(Suppl 1): i47-i54.
|
[135] |
Chavarriaga-Aguirre P., Brand A., Medina A., Prías M., Escobar R., Martinez J.,
|
[136] |
Bourgin J.P., Chupeau Y., Missonier C.. Plant regeneration from mesophyll protoplasts of several Nicotiana species. Physiol Plant. 1979; 45(2): 288-292.
|
[137] |
Maliga P., Sz-Breznovits A., Márton L.. Streptomycin-resistant plants from callus culture of haploid tobacco. Nat New Biol. 1973; 244(131): 29-30.
|
[138] |
Hansen A.J.. Systemic tobacco mosaic virus infection of a “resistant” N-gene-carrying tobacco hybrid raised from infected callus culture. Virology. 1974; 57(2): 387-391.
|
[139] |
Berlyn M.B.. Variation in nuclear DNA content of isonicotinic acid hydrazide-resistant cell lines and mutant plants of Nicotiana tabacum. Theor Appl Genet. 1982; 63(1): 57-63.
|
[140] |
Pandey A., Misra P., Chandrashekar K., Trivedi P.K.. Development of AtMYB12-expressing transgenic tobacco callus culture for production of rutin with biopesticidal potential. Plant Cell Rep. 2012; 31(10): 1867-1876.
|
[141] |
Davidonis G.H., Hamilton R.H.. Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett. 1983; 32(1–2): 89-93.
|
[142] |
Shoemaker R.C., Couche L.J., Galbraith D.W.. Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep. 1986; 5(3): 178-181.
|
[143] |
Robinson K.E.P., Firoozabady E.. Transformation of floriculture crops. Sci Hortic (Amsterdam Neth). 1993; 55(1–2): 83-99.
|
[144] |
Hossain Z., Mandal A.K., Datta S.K., Biswas A.K.. Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. J Biotechnol. 2007; 129(4): 658-667.
|
[145] |
Minerva G., Kumar S.. Micropropagation of Gerbera (Gerbera jamesonii Bolus). In:
|
[146] |
Kuehnle A.R., Chen F.C., Sugii N.. Somatic embryogenesis and plant regeneration in Anthurium andraeanum hybrids. Plant Cell Rep. 1992; 11(9): 438-442.
|
[147] |
Guo Y., Wiegert-Rininger K.E., Vallejo V.A., Barry C.S., Warner R.M.. Transcriptome-enabled marker discovery and mapping of plastochron-related genes in Petunia spp. BMC Genomics. 2015; 16: 726.
|
[148] |
Zhang J., Gai M., Li X., Li T., Sun H.. Somatic embryogenesis and direct as well as indirect organogenesis in Lilium pumilum DC. Fisch., an endangered ornamental and medicinal plant. Biosci Biotechnol Biochem. 2016; 80(10): 1898-1906.
|
[149] |
Daniell H., Streatfield S.J., Wycoff K.. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 2001; 6(5): 219-226.
|
/
〈 |
|
〉 |