从药物开发的角度看工程化T细胞疗法

工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 140-149.

PDF(1189 KB)
PDF(1189 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 140-149. DOI: 10.1016/j.eng.2018.11.010
研究论文
Research Immunology—Review

从药物开发的角度看工程化T细胞疗法

作者信息 +

Engineered T Cell Therapies from a Drug Development Viewpoint

Author information +
History +

Abstract

Cancer is one of the leading causes of death worldwide. Recent advances in cellular therapy have demonstrated that this platform has the potential to give patients with certain cancers a second chance at life. Unlike chemical compounds and proteins, cells are living, self-replicating drugs that can be engineered to possess exquisite specificity. For example, T cells can be genetically modified to express chimeric antigen receptors (CARs), endowing them with the capacity to recognize and kill tumor cells and form a memory pool that is ready to strike back against persisting malignant cells. Anti-CD19 chimeric antigen receptor T cells (CART19s) have demonstrated a remarkable degree of clinical efficacy for certain malignancies. The process of developing CART19 essentially follows the conventional “one gene, one drug, one disease” paradigm derived from Paul Ehrlich’s “magic bullet” concept. With major players within the pharmaceutical industry joining forces to commercialize this new category of “living drugs,” it is useful to use CART19 as an example to examine the similarities and differences in its development, compared with that of a conventional drug. In this way, we can assimilate existing knowledge and identify the most effective approach for advancing similar strategies. This article reviews the use of biomarker-based assays to guide the optimization of CAR constructs, preclinical studies, and the evaluation of clinical efficacy; adverse effects (AEs); and CART19 cellular kinetics. Advanced technologies and computational tools that enable the discovery of optimal targets, novel CAR binding domains, and biomarkers predicting clinical response and AEs are also discussed. We believe that the success of CART19 will lead to the development of other engineered T cell therapies in the same manner that the discovery of arsphenamine initiated the era of synthetic pharmaceuticals.

Keywords

Engineered T cell therapies / Chimeric antigen receptor / Drug development process / Biomarkers / CD19-specific chimeric antigen receptor / Anti-CD19 chimeric antigen receptor T cells

引用本文

导出引用
. . Engineering. 2019, 5(1): 140-149 https://doi.org/10.1016/j.eng.2018.11.010

参考文献

[1]
Rappuoli R.. Vaccines: science, health, longevity, and wealth. Proc Natl Acad Sci USA. 2014; 111(34): 12282.
[2]
Adedeji W.A.. The treasure called antibiotics. Ann Ib Postgrad Med. 2016; 14(2): 56-57.
[3]
Riedel S.. Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent). 2005; 18(1): 21-25.
[4]
National Center for Health Statistics. Health, United States, 2016: with chartbook on long-term trends in health. Report.
[5]
Miller K.D., Siegel R.L., Lin C.C., Mariotto A.B., Kramer J.L., Rowland J.H., . Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016; 66(4): 271-289.
[6]
Kochenderfer J.N., Wilson W.H., Janik J.E., Dudley M.E., Stetler-Stevenson M., Feldman S.A., . Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010; 116(20): 4099-4102.
[7]
Porter D.L., Levine B.L., Kalos M., Bagg A., June C.H.. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011; 365(8): 725-733.
[8]
Kalos M., Levine B.L., Porter D.L., Katz S., Grupp S.A., Bagg A., . T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011; 3(95): 95ra73.
[9]
Yousefi H., Yuan J., Keshavarz-Fathi M., Murphy J.F., Rezaei N.. Immunotherapy of cancers comes of age. Expert Rev Clin Immunol. 2017; 13(10): 1001-1015.
[10]
Kaufman H.L., Kohlhapp F.J., Zloza A.. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015; 14: 642-662. Corrigenda in: Nat Rev Drug Discov 2016;15:143,660
[11]
Kumar M., Nagpal R., Hemalatha R., Verma V., Kumar A., Singh S., . Targeted cancer therapies: the future of cancer treatment. Acta Biomed. 2012; 83(3): 220-233.
[12]
Brown C.. Targeted therapy: an elusive cancer target. Nature. 2016; 537(7620): S106-S108.
[13]
Feldman S.A., Assadipour Y., Kriley I., Goff S.L., Rosenberg S.A.. Adoptive cell therapy—tumor-infiltrating lymphocytes, T-cell receptors, and chimeric antigen receptors. Semin Oncol. 2015; 42(4): 626-639.
[14]
Pettitt D., Arshad Z., Smith J., Stanic T., Hollander G., Brindley D.. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Mol Ther. 2018; 26(2): 342-353.
[15]
Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H., . Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018; 378(5): 439-448.
[16]
Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A., . Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017; 377(26): 2531-2544.
[17]
Schuster S.J., Svoboda J., Chong E.A., Nasta S.D., Mato A.R., Anak Ö., . Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017; 377(26): 2545-2554.
[18]
Lim W.A., June C.H.. The principles of engineering immune cells to treat cancer. Cell. 2017; 168(4): 724-740.
[19]
Sadelain M., Rivière I., Riddell S.. Therapeutic T cell engineering. Nature. 2017; 545(7655): 423-431.
[20]
Parida S.K., Poiret T., Zhenjiang L., Meng Q., Heyckendorf J., Lange C., . T-Cell therapy: options for infectious diseases. Clin Infect Dis. 2015; 61(Suppl 3): S217-S224.
[21]
Drews J.. Drug discovery: a historical perspective. Science. 2000; 287(5460): 1960-1964.
[22]
Drews J.. Case histories, magic bullets and the state of drug discovery. Nat Rev Drug Discov. 2006; 5(8): 635-640.
[23]
Levine B.L., Humeau L.M., Boyer J., MacGregor R.R., Rebello T., Lu X., . Gene transfer in humans using a conditionally replicating lentiviral vector. Proc Natl Acad Sci USA. 2006; 103(46): 17372-17377.
[24]
Monjezi R., Miskey C., Gogishvili T., Schleef M., Schmeer M., Einsele H., . Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia. 2017; 31(1): 186-194.
[25]
Wen H., Jung H., Li X.. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015; 17(6): 1327-1340.
[26]
Mueller K.T., Maude S.L., Porter D.L., Frey N., Wood P., Han X., . Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood. 2017; 130(21): 2317-2325.
[27]
Levine B.L., Miskin J., Wonnacott K., Keir C.. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017; 4: 92-101.
[28]
Lacey S.F., Kalos M.. Biomarkers in T-cell therapy clinical trials. Cytotherapy. 2013; 15(6): 632-640.
[29]
Novosiadly R., Kalos M.. High-content molecular profiling of T-cell therapy in oncology. Mol Ther Oncolytics. 2016; 3: 16009.
[30]
Hughes J.P., Rees S., Kalindjian S.B., Philpott K.L.. Principles of early drug discovery. Br J Pharmacol. 2011; 162(6): 1239-1249.
[31]
Schenone M., Dančík V., Wagner B.K., Clemons P.A.. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013; 9(4): 232-240.
[32]
Gashaw I., Ellinghaus P., Sommer A., Asadullah K.. What makes a good drug target?. Drug Discov Today. 2012; 17(Suppl): S24-S30.
[33]
Finan C., Gaulton A., Kruger F.A., Lumbers R.T., Shah T., Engmann J., . The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017; 9(383): eaag1166.
[34]
Li J., Zhu Z.. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin. 2010; 31(9): 1198-1207.
[35]
Maus M.V., Grupp S.A., Porter D.L., June C.H.. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014; 123(17): 2625-2635.
[36]
Nicholson I.C., Lenton K.A., Little D.J., Decorso T., Lee F.T., Scott A.M., . Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol Immunol. 1997; 34(16–17): 1157-1165.
[37]
Milone M.C., Fish J.D., Carpenito C., Carroll R.G., Binder G.K., Teachey D., . Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009; 17(8): 1453-1464.
[38]
Cooper G.M.. The cell: a molecular approach. 2nd ed.
[39]
Steentoft C., Migliorini D., King T.R., Mandel U., June C.H., Posey AD.Jr.. Glycan-directed CAR-T cells. Glycobiology. 2018; 28(9): 656-669.
[40]
Prapa M., Caldrer S., Spano C., Bestagno M., Golinelli G., Grisendi G., . A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget. 2015; 6(28): 24884-24894.
[41]
Walseng E., Köksal H., Sektioglu I.M., Fåne A., Skorstad G., Kvalheim G., . A TCR-based chimeric antigen receptor. Sci Rep. 2017; 7(1): 10713.
[42]
Chmielewski M., Hombach A.A., Abken H.. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol. 2013; 4: 371.
[43]
Schumacher T.N., Schreiber R.D.. Neoantigens in cancer immunotherapy. Science. 2015; 348(6230): 69-74.
[44]
Ruella M., Levine B.L.. Smart CARS: optimized development of a chimeric antigen receptor (CAR) T cell targeting epidermal growth factor receptor variant III (EGFRvIII) for glioblastoma. Ann Transl Med. 2016; 4(1): 13.
[45]
O’Rourke D.M., Nasrallah M.P., Desai A., Melenhorst J.J., Mansfield K., Morrissette J.J.D., . A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017; 9(399): eaaa0984.
[46]
Brentjens R.J., Latouche J.B., Santos E., Marti F., Gong M.C., Lyddane C., . Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med. 2003; 9(3): 279-286.
[47]
Feng K., Liu Y., Guo Y., Qiu J., Wu Z., Dai H., . Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell. 2018; 9(10): 838-847.
[48]
Gjerstorff M.F., Andersen M.H., Ditzel H.J.. Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget. 2015; 6(18): 15772-15787.
[49]
Schultz-Thater E., Noppen C., Gudat F., Dürmüller U., Zajac P., Kocher T., . NY-ESO-1 tumour associated antigen is a cytoplasmic protein detectable by specific monoclonal antibodies in cell lines and clinical specimens. Br J Cancer. 2000; 83(2): 204-208.
[50]
Draper L.M., Kwong M.L., Gros A., Stevanovic S., Tran E., Kerkar S., . Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6. Clin Cancer Res. 2015; 21(19): 4431-4439.
[51]
Uckun F.M., Jaszcz W., Ambrus J.L., Fauci A.S., Gajl-Peczalska K., Song C.W., . Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood. 1988; 71(1): 13-29.
[52]
Zhou L.J., Ord D.C., Hughes A.L., Tedder T.F.. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol. 1991; 147(4): 1424-1432.
[53]
Barrington R.A., Schneider T.J., Pitcher L.A., Mempel T.R., Ma M., Barteneva N.S., . Uncoupling CD21 and CD19 of the B-cell coreceptor. Proc Natl Acad Sci USA. 2009; 106(34): 14490-14495.
[54]
Levy S., Shoham T.. The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol. 2005; 5(2): 136-148.
[55]
Pezzutto A., Dörken B., Rabinovitch P.S., Ledbetter J.A., Moldenhauer G., Clark E.A.. CD19 monoclonal antibody HD37 inhibits anti-immunoglobulin-induced B cell activation and proliferation. J Immunol. 1987; 138(9): 2793-2799.
[56]
Castellarin M., Watanabe K., June C.H., Kloss C.C., Posey A.D.Jr.. Driving cars to the clinic for solid tumors. Gene Ther. 2018; 25(3): 165-175.
[57]
Balemans W., Ebeling M., Patel N., Van Hul E., Olson P., Dioszegi M., . Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001; 10(5): 537-543.
[58]
Sioud M.. Main approaches to target discovery and validation. Methods Mol Biol. 2007; 360: 1-12.
[59]
Tammana S., Huang X., Wong M., Milone M.C., Ma L., Levine B.L., . 4–1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum Gene Ther. 2010; 21(1): 75-86.
[60]
Carpenito C., Milone M.C., Hassan R., Simonet J.C., Lakhal M., Suhoski M.M., . Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci USA. 2009; 106(9): 3360-3365.
[61]
Johnson L.A., Scholler J., Ohkuri T., Kosaka A., Patel P.R., McGettigan S.E., . Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. 2015; 7(275): 275ra22.
[62]
Guedan S., Posey AD.Jr, Shaw C., Wing A., Da T., Patel P.R.. Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. JCI Insight. 2018; 3(1): 96976.
[63]
Nadler L.M., Anderson K.C., Marti G., Bates M., Park E., Daley J.F., . B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. J Immunol. 1983; 131(1): 244-250.
[64]
Zola H., Macardle P.J., Bradford T., Weedon H., Yasui H., Kurosawa Y.. Preparation and characterization of a chimeric CD19 monoclonal antibody. Immunol Cell Biol. 1991; 69(6): 411-422.
[65]
Ruella M., Xu J., Barrett D.M., Fraietta J.A., Reich T.J., Ambrose D.E., . Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018; 24(10): 1499-1503.
[66]
Hartmann J., Schüßler-Lenz M., Bondanza A., Buchholz C.J.. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017; 9(9): 1183-1197.
[67]
Löffler A., Kufer P., Lutterbüse R., Zettl F., Daniel P.T., Schwenkenbecher J.M., . A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000; 95(6): 2098-2103.
[68]
Turtle C.J., Hanafi L.A., Berger C., Gooley T.A., Cherian S., Hudecek M., . CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016; 126(6): 2123-2138.
[69]
Alabanza L., Pegues M., Geldres C., Shi V., Wiltzius J.J.W., Sievers S.A., . Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther. 2017; 25(11): 2452-2465.
[70]
Sadelain M.. CAR therapy: the CD19 paradigm. J Clin Invest. 2015; 125(9): 3392-3400.
[71]
In: editor. Principles of translational science in medicine: from bench to bedside. 2nd ed. Cambridge: Academic Press; 2015.
[72]
Choi D.W.. Exploratory clinical testing of neuroscience drugs. Nat Neurosci. 2002; 5(Suppl): 1023-1025.
[73]
Emens L.A., Butterfield L.H., Hodi FS.Jr, Marincola F.M., Kaufman H.L.. Cancer immunotherapy trials: leading a paradigm shift in drug development. J Immunother Cancer. 2016; 4: 42.
[74]
Food and Drug Administration. Expanded access to investigational drugs for treatment use—questions and answers: guidance for industry.
[75]
Grupp S.A., Kalos M., Barrett D., Aplenc R., Porter D.L., Rheingold S.R., . Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013; 368(16): 1509-1518.
[76]
Porter D.L., Hwang W.T., Frey N.V., Lacey S.F., Shaw P.A., Loren A.W., . Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015; 7(303): 303ra139.
[77]
Teachey D.T., Lacey S.F., Shaw P.A., Melenhorst J.J., Maude S.L., Frey N., . Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016; 6(6): 664-679.
[78]
Aktas E., Kucuksezer U.C., Bilgic S., Erten G., Deniz G.. Relationship between CD107a expression and cytotoxic activity. Cell Immunol. 2009; 254(2): 149-154.
[79]
Turtle C.J., Hanafi L.A., Berger C., Hudecek M., Pender B., Robinson E., . Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med. 2016; 8(355): 355ra116.
[80]
DeFrancesco L.. CAR-T’s forge ahead, despite Juno deaths. Nat Biotechnol. 2017; 35(1): 6-7.
[81]
Gust J., Hay K.A., Hanafi L.A., Li D., Myerson D., Gonzalez-Cuyar L.F., . Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017; 7(12): 1404-1419.
[82]
Wang Q., Chaerkady R., Wu J., Hwang H.J., Papadopoulos N., Kopelovich L., . Mutant proteins as cancer-specific biomarkers. Proc Natl Acad Sci USA. 2011; 108(6): 2444-2449.
[83]
Tran E., Robbins P.F., Rosenberg S.A.. “Final common pathway” of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017; 18(3): 255-262.
[84]
Lu Y.C., Zheng Z., Robbins P.F., Tran E., Prickett T.D., Gartner J.J., . An efficient single-cell RNA-seq approach to identify neoantigen-specific T cell receptors. Mol Ther. 2018; 26(2): 379-389.
[85]
Wang C., Gu Y., Zhang K., Xie K., Zhu M., Dai N., . Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types. Nat Commun. 2016; 7: 10499.
[86]
Sugiyama A., Umetsu M., Nakazawa H., Niide T., Onodera T., Hosokawa K., . A semi high-throughput method for screening small bispecific antibodies with high cytotoxicity. Sci Rep. 2017; 7(1): 2862.
[87]
Janzen W.P.. Screening technologies for small molecule discovery: the state of the art. Chem Biol. 2014; 21(9): 1162-1170.
[88]
Terrett N.K., Gardner M., Gordon D.W., Kobylecki R.J., Steele J.. Drug discovery by combinatorial chemistry—the development of a novel method for the rapid synthesis of single compounds. Chem-Eur J. 1997; 3(12): 1917-1920.
[89]
Lerner R.A.. Combinatorial antibody libraries: new advances, new immunological insights. Nat Rev Immunol. 2016; 16(8): 498-508.
[90]
Sommermeyer D., Hill T., Shamah S.M., Salter A.I., Chen Y., Mohler K.M., . Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia. 2017; 31(10): 2191-2199.
[91]
Frey N.V., Porter D.L.. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program). 2016; 2016(1): 567-572.
[92]
Nassar A.F., Ogura H., Wisnewski A.V.. Impact of recent innovations in the use of mass cytometry in support of drug development. Drug Discov Today. 2015; 20(10): 1169-1175.
[93]
Stoeckius M., Hafemeister C., Stephenson W., Houck-Loomis B., Chattopadhyay P.K., Swerdlow H., . Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017; 14(9): 865-868.
[94]
Peterson V.M., Zhang K.X., Kumar N., Wong J., Li L., Wilson D.C., . Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017; 35(10): 936-939.
[95]
Fraietta J.A., Lacey S.F., Orlando E.J., Pruteanu-Malinici I., Gohil M., Lundh S., . Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018; 24(5): 563-571.
[96]
Hensley P.. SOMAmers and SOMAscan—a protein biomarker discovery platform for rapid analysis of sample collections from bench top to the clinic. J Biomol Tech. 2013; 24(Suppl): S5.
[97]
Wilson J.J., Burgess R., Mao Y.Q., Luo S., Tang H., Jones V.S., . Antibody arrays in biomarker discovery. Adv Clin Chem. 2015; 69: 255-324.
[98]
Scheerens H., Malong A., Bassett K., Boyd Z., Gupta V., Harris J., . Current status of companion and complementary diagnostics: strategic considerations for development and launch. Clin Transl Sci. 2017; 10(2): 84-92.
[99]
Ghesquieres H., Slager S.L., Jardin F., Veron A.S., Asmann Y.W., Maurer M.J., . Genome-wide association study of event-free survival in diffuse large B-cell lymphoma treated with immunochemotherapy. J Clin Oncol. 2015; 33(33): 3930-3937.
[100]
Siemers N.O., Holloway J.L., Chang H., Chasalow S.D., Ross-MacDonald P.B., Voliva C.F., . Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors. PLoS One. 2017; 12(7): e0179726.
[101]
Jørgensen J.T.. Companion diagnostic assays for PD-1/PD-L1 checkpoint inhibitors in NSCLC. Expert Rev Mol Diagn. 2016; 16(2): 131-133.
[102]
Bosch F., Rosich L.. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology. 2008; 82(3): 171-179.
Acknowledgements

The authors are grateful for support from the Center for Cellular Immunotherapies and the Abramson Cancer Center at the Perelman School of Medicine, University of Pennsylvania; the Parker Institute for Cancer Immunotherapy; and Peking University. The authors thank Regina Young for coordinating the effort in the clearance of this paper.

Compliance with ethics guidelines

Carl H. June: Celldex Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Joseph A. Fraietta and Simon F. Lacey: Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Tmunity Therapeutics: Research Funding. J. Joseph Melenhorst: Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Incyte: Research Funding; Simcere: Consultancy; Shanghai Unicar: Consultancy. Fang Chen: Novartis Pharmaceutical Corporation: Patents & Royalties. Zhongwei Xu: BIOCELTECH: Equity Ownership, Research Funding.

版权

2019 THE AUTHORS
PDF(1189 KB)

Accesses

Citation

Detail

段落导航
相关文章

/