
从药物开发的角度看工程化T细胞疗法
Engineered T Cell Therapies from a Drug Development Viewpoint
Cancer is one of the leading causes of death worldwide. Recent advances in cellular therapy have demonstrated that this platform has the potential to give patients with certain cancers a second chance at life. Unlike chemical compounds and proteins, cells are living, self-replicating drugs that can be engineered to possess exquisite specificity. For example, T cells can be genetically modified to express chimeric antigen receptors (CARs), endowing them with the capacity to recognize and kill tumor cells and form a memory pool that is ready to strike back against persisting malignant cells. Anti-CD19 chimeric antigen receptor T cells (CART19s) have demonstrated a remarkable degree of clinical efficacy for certain malignancies. The process of developing CART19 essentially follows the conventional “one gene, one drug, one disease” paradigm derived from Paul Ehrlich’s “magic bullet” concept. With major players within the pharmaceutical industry joining forces to commercialize this new category of “living drugs,” it is useful to use CART19 as an example to examine the similarities and differences in its development, compared with that of a conventional drug. In this way, we can assimilate existing knowledge and identify the most effective approach for advancing similar strategies. This article reviews the use of biomarker-based assays to guide the optimization of CAR constructs, preclinical studies, and the evaluation of clinical efficacy; adverse effects (AEs); and CART19 cellular kinetics. Advanced technologies and computational tools that enable the discovery of optimal targets, novel CAR binding domains, and biomarkers predicting clinical response and AEs are also discussed. We believe that the success of CART19 will lead to the development of other engineered T cell therapies in the same manner that the discovery of arsphenamine initiated the era of synthetic pharmaceuticals.
Engineered T cell therapies / Chimeric antigen receptor / Drug development process / Biomarkers / CD19-specific chimeric antigen receptor / Anti-CD19 chimeric antigen receptor T cells
[1] |
Rappuoli R.. Vaccines: science, health, longevity, and wealth. Proc Natl Acad Sci USA. 2014; 111(34): 12282.
|
[2] |
Adedeji W.A.. The treasure called antibiotics. Ann Ib Postgrad Med. 2016; 14(2): 56-57.
|
[3] |
Riedel S.. Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent). 2005; 18(1): 21-25.
|
[4] |
National Center for Health Statistics. Health, United States, 2016: with chartbook on long-term trends in health. Report.
|
[5] |
Miller K.D., Siegel R.L., Lin C.C., Mariotto A.B., Kramer J.L., Rowland J.H.,
|
[6] |
Kochenderfer J.N., Wilson W.H., Janik J.E., Dudley M.E., Stetler-Stevenson M., Feldman S.A.,
|
[7] |
Porter D.L., Levine B.L., Kalos M., Bagg A., June C.H.. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011; 365(8): 725-733.
|
[8] |
Kalos M., Levine B.L., Porter D.L., Katz S., Grupp S.A., Bagg A.,
|
[9] |
Yousefi H., Yuan J., Keshavarz-Fathi M., Murphy J.F., Rezaei N.. Immunotherapy of cancers comes of age. Expert Rev Clin Immunol. 2017; 13(10): 1001-1015.
|
[10] |
Kaufman H.L., Kohlhapp F.J., Zloza A.. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015; 14: 642-662. Corrigenda in: Nat Rev Drug Discov 2016;15:143,660
|
[11] |
Kumar M., Nagpal R., Hemalatha R., Verma V., Kumar A., Singh S.,
|
[12] |
Brown C.. Targeted therapy: an elusive cancer target. Nature. 2016; 537(7620): S106-S108.
|
[13] |
Feldman S.A., Assadipour Y., Kriley I., Goff S.L., Rosenberg S.A.. Adoptive cell therapy—tumor-infiltrating lymphocytes, T-cell receptors, and chimeric antigen receptors. Semin Oncol. 2015; 42(4): 626-639.
|
[14] |
Pettitt D., Arshad Z., Smith J., Stanic T., Hollander G., Brindley D.. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Mol Ther. 2018; 26(2): 342-353.
|
[15] |
Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H.,
|
[16] |
Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A.,
|
[17] |
Schuster S.J., Svoboda J., Chong E.A., Nasta S.D., Mato A.R., Anak Ö.,
|
[18] |
Lim W.A., June C.H.. The principles of engineering immune cells to treat cancer. Cell. 2017; 168(4): 724-740.
|
[19] |
Sadelain M., Rivière I., Riddell S.. Therapeutic T cell engineering. Nature. 2017; 545(7655): 423-431.
|
[20] |
Parida S.K., Poiret T., Zhenjiang L., Meng Q., Heyckendorf J., Lange C.,
|
[21] |
Drews J.. Drug discovery: a historical perspective. Science. 2000; 287(5460): 1960-1964.
|
[22] |
Drews J.. Case histories, magic bullets and the state of drug discovery. Nat Rev Drug Discov. 2006; 5(8): 635-640.
|
[23] |
Levine B.L., Humeau L.M., Boyer J., MacGregor R.R., Rebello T., Lu X.,
|
[24] |
Monjezi R., Miskey C., Gogishvili T., Schleef M., Schmeer M., Einsele H.,
|
[25] |
Wen H., Jung H., Li X.. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015; 17(6): 1327-1340.
|
[26] |
Mueller K.T., Maude S.L., Porter D.L., Frey N., Wood P., Han X.,
|
[27] |
Levine B.L., Miskin J., Wonnacott K., Keir C.. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017; 4: 92-101.
|
[28] |
Lacey S.F., Kalos M.. Biomarkers in T-cell therapy clinical trials. Cytotherapy. 2013; 15(6): 632-640.
|
[29] |
Novosiadly R., Kalos M.. High-content molecular profiling of T-cell therapy in oncology. Mol Ther Oncolytics. 2016; 3: 16009.
|
[30] |
Hughes J.P., Rees S., Kalindjian S.B., Philpott K.L.. Principles of early drug discovery. Br J Pharmacol. 2011; 162(6): 1239-1249.
|
[31] |
Schenone M., Dančík V., Wagner B.K., Clemons P.A.. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013; 9(4): 232-240.
|
[32] |
Gashaw I., Ellinghaus P., Sommer A., Asadullah K.. What makes a good drug target?. Drug Discov Today. 2012; 17(Suppl): S24-S30.
|
[33] |
Finan C., Gaulton A., Kruger F.A., Lumbers R.T., Shah T., Engmann J.,
|
[34] |
Li J., Zhu Z.. Research and development of next generation of antibody-based therapeutics. Acta Pharmacol Sin. 2010; 31(9): 1198-1207.
|
[35] |
Maus M.V., Grupp S.A., Porter D.L., June C.H.. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014; 123(17): 2625-2635.
|
[36] |
Nicholson I.C., Lenton K.A., Little D.J., Decorso T., Lee F.T., Scott A.M.,
|
[37] |
Milone M.C., Fish J.D., Carpenito C., Carroll R.G., Binder G.K., Teachey D.,
|
[38] |
Cooper G.M.. The cell: a molecular approach. 2nd ed.
|
[39] |
Steentoft C., Migliorini D., King T.R., Mandel U., June C.H., Posey AD.Jr.. Glycan-directed CAR-T cells. Glycobiology. 2018; 28(9): 656-669.
|
[40] |
Prapa M., Caldrer S., Spano C., Bestagno M., Golinelli G., Grisendi G.,
|
[41] |
Walseng E., Köksal H., Sektioglu I.M., Fåne A., Skorstad G., Kvalheim G.,
|
[42] |
Chmielewski M., Hombach A.A., Abken H.. Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol. 2013; 4: 371.
|
[43] |
Schumacher T.N., Schreiber R.D.. Neoantigens in cancer immunotherapy. Science. 2015; 348(6230): 69-74.
|
[44] |
Ruella M., Levine B.L.. Smart CARS: optimized development of a chimeric antigen receptor (CAR) T cell targeting epidermal growth factor receptor variant III (EGFRvIII) for glioblastoma. Ann Transl Med. 2016; 4(1): 13.
|
[45] |
O’Rourke D.M., Nasrallah M.P., Desai A., Melenhorst J.J., Mansfield K., Morrissette J.J.D.,
|
[46] |
Brentjens R.J., Latouche J.B., Santos E., Marti F., Gong M.C., Lyddane C.,
|
[47] |
Feng K., Liu Y., Guo Y., Qiu J., Wu Z., Dai H.,
|
[48] |
Gjerstorff M.F., Andersen M.H., Ditzel H.J.. Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget. 2015; 6(18): 15772-15787.
|
[49] |
Schultz-Thater E., Noppen C., Gudat F., Dürmüller U., Zajac P., Kocher T.,
|
[50] |
Draper L.M., Kwong M.L., Gros A., Stevanovic S., Tran E., Kerkar S.,
|
[51] |
Uckun F.M., Jaszcz W., Ambrus J.L., Fauci A.S., Gajl-Peczalska K., Song C.W.,
|
[52] |
Zhou L.J., Ord D.C., Hughes A.L., Tedder T.F.. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol. 1991; 147(4): 1424-1432.
|
[53] |
Barrington R.A., Schneider T.J., Pitcher L.A., Mempel T.R., Ma M., Barteneva N.S.,
|
[54] |
Levy S., Shoham T.. The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol. 2005; 5(2): 136-148.
|
[55] |
Pezzutto A., Dörken B., Rabinovitch P.S., Ledbetter J.A., Moldenhauer G., Clark E.A.. CD19 monoclonal antibody HD37 inhibits anti-immunoglobulin-induced B cell activation and proliferation. J Immunol. 1987; 138(9): 2793-2799.
|
[56] |
Castellarin M., Watanabe K., June C.H., Kloss C.C., Posey A.D.Jr.. Driving cars to the clinic for solid tumors. Gene Ther. 2018; 25(3): 165-175.
|
[57] |
Balemans W., Ebeling M., Patel N., Van Hul E., Olson P., Dioszegi M.,
|
[58] |
Sioud M.. Main approaches to target discovery and validation. Methods Mol Biol. 2007; 360: 1-12.
|
[59] |
Tammana S., Huang X., Wong M., Milone M.C., Ma L., Levine B.L.,
|
[60] |
Carpenito C., Milone M.C., Hassan R., Simonet J.C., Lakhal M., Suhoski M.M.,
|
[61] |
Johnson L.A., Scholler J., Ohkuri T., Kosaka A., Patel P.R., McGettigan S.E.,
|
[62] |
Guedan S., Posey AD.Jr, Shaw C., Wing A., Da T., Patel P.R.. Enhancing CAR T cell persistence through ICOS and 4–1BB costimulation. JCI Insight. 2018; 3(1): 96976.
|
[63] |
Nadler L.M., Anderson K.C., Marti G., Bates M., Park E., Daley J.F.,
|
[64] |
Zola H., Macardle P.J., Bradford T., Weedon H., Yasui H., Kurosawa Y.. Preparation and characterization of a chimeric CD19 monoclonal antibody. Immunol Cell Biol. 1991; 69(6): 411-422.
|
[65] |
Ruella M., Xu J., Barrett D.M., Fraietta J.A., Reich T.J., Ambrose D.E.,
|
[66] |
Hartmann J., Schüßler-Lenz M., Bondanza A., Buchholz C.J.. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017; 9(9): 1183-1197.
|
[67] |
Löffler A., Kufer P., Lutterbüse R., Zettl F., Daniel P.T., Schwenkenbecher J.M.,
|
[68] |
Turtle C.J., Hanafi L.A., Berger C., Gooley T.A., Cherian S., Hudecek M.,
|
[69] |
Alabanza L., Pegues M., Geldres C., Shi V., Wiltzius J.J.W., Sievers S.A.,
|
[70] |
Sadelain M.. CAR therapy: the CD19 paradigm. J Clin Invest. 2015; 125(9): 3392-3400.
|
[71] |
In:
|
[72] |
Choi D.W.. Exploratory clinical testing of neuroscience drugs. Nat Neurosci. 2002; 5(Suppl): 1023-1025.
|
[73] |
Emens L.A., Butterfield L.H., Hodi FS.Jr, Marincola F.M., Kaufman H.L.. Cancer immunotherapy trials: leading a paradigm shift in drug development. J Immunother Cancer. 2016; 4: 42.
|
[74] |
Food and Drug Administration. Expanded access to investigational drugs for treatment use—questions and answers: guidance for industry.
|
[75] |
Grupp S.A., Kalos M., Barrett D., Aplenc R., Porter D.L., Rheingold S.R.,
|
[76] |
Porter D.L., Hwang W.T., Frey N.V., Lacey S.F., Shaw P.A., Loren A.W.,
|
[77] |
Teachey D.T., Lacey S.F., Shaw P.A., Melenhorst J.J., Maude S.L., Frey N.,
|
[78] |
Aktas E., Kucuksezer U.C., Bilgic S., Erten G., Deniz G.. Relationship between CD107a expression and cytotoxic activity. Cell Immunol. 2009; 254(2): 149-154.
|
[79] |
Turtle C.J., Hanafi L.A., Berger C., Hudecek M., Pender B., Robinson E.,
|
[80] |
DeFrancesco L.. CAR-T’s forge ahead, despite Juno deaths. Nat Biotechnol. 2017; 35(1): 6-7.
|
[81] |
Gust J., Hay K.A., Hanafi L.A., Li D., Myerson D., Gonzalez-Cuyar L.F.,
|
[82] |
Wang Q., Chaerkady R., Wu J., Hwang H.J., Papadopoulos N., Kopelovich L.,
|
[83] |
Tran E., Robbins P.F., Rosenberg S.A.. “Final common pathway” of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017; 18(3): 255-262.
|
[84] |
Lu Y.C., Zheng Z., Robbins P.F., Tran E., Prickett T.D., Gartner J.J.,
|
[85] |
Wang C., Gu Y., Zhang K., Xie K., Zhu M., Dai N.,
|
[86] |
Sugiyama A., Umetsu M., Nakazawa H., Niide T., Onodera T., Hosokawa K.,
|
[87] |
Janzen W.P.. Screening technologies for small molecule discovery: the state of the art. Chem Biol. 2014; 21(9): 1162-1170.
|
[88] |
Terrett N.K., Gardner M., Gordon D.W., Kobylecki R.J., Steele J.. Drug discovery by combinatorial chemistry—the development of a novel method for the rapid synthesis of single compounds. Chem-Eur J. 1997; 3(12): 1917-1920.
|
[89] |
Lerner R.A.. Combinatorial antibody libraries: new advances, new immunological insights. Nat Rev Immunol. 2016; 16(8): 498-508.
|
[90] |
Sommermeyer D., Hill T., Shamah S.M., Salter A.I., Chen Y., Mohler K.M.,
|
[91] |
Frey N.V., Porter D.L.. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program). 2016; 2016(1): 567-572.
|
[92] |
Nassar A.F., Ogura H., Wisnewski A.V.. Impact of recent innovations in the use of mass cytometry in support of drug development. Drug Discov Today. 2015; 20(10): 1169-1175.
|
[93] |
Stoeckius M., Hafemeister C., Stephenson W., Houck-Loomis B., Chattopadhyay P.K., Swerdlow H.,
|
[94] |
Peterson V.M., Zhang K.X., Kumar N., Wong J., Li L., Wilson D.C.,
|
[95] |
Fraietta J.A., Lacey S.F., Orlando E.J., Pruteanu-Malinici I., Gohil M., Lundh S.,
|
[96] |
Hensley P.. SOMAmers and SOMAscan—a protein biomarker discovery platform for rapid analysis of sample collections from bench top to the clinic. J Biomol Tech. 2013; 24(Suppl): S5.
|
[97] |
Wilson J.J., Burgess R., Mao Y.Q., Luo S., Tang H., Jones V.S.,
|
[98] |
Scheerens H., Malong A., Bassett K., Boyd Z., Gupta V., Harris J.,
|
[99] |
Ghesquieres H., Slager S.L., Jardin F., Veron A.S., Asmann Y.W., Maurer M.J.,
|
[100] |
Siemers N.O., Holloway J.L., Chang H., Chasalow S.D., Ross-MacDonald P.B., Voliva C.F.,
|
[101] |
Jørgensen J.T.. Companion diagnostic assays for PD-1/PD-L1 checkpoint inhibitors in NSCLC. Expert Rev Mol Diagn. 2016; 16(2): 131-133.
|
[102] |
Bosch F., Rosich L.. The contributions of Paul Ehrlich to pharmacology: a tribute on the occasion of the centenary of his Nobel Prize. Pharmacology. 2008; 82(3): 171-179.
|
The authors are grateful for support from the Center for Cellular Immunotherapies and the Abramson Cancer Center at the Perelman School of Medicine, University of Pennsylvania; the Parker Institute for Cancer Immunotherapy; and Peking University. The authors thank Regina Young for coordinating the effort in the clearance of this paper.
Carl H. June: Celldex Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Immune Design: Membership on an entity's Board of Directors or advisory committees; Tmunity Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding. Joseph A. Fraietta and Simon F. Lacey: Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Tmunity Therapeutics: Research Funding. J. Joseph Melenhorst: Novartis Pharmaceutical Corporation: Patents & Royalties, Research Funding; Incyte: Research Funding; Simcere: Consultancy; Shanghai Unicar: Consultancy. Fang Chen: Novartis Pharmaceutical Corporation: Patents & Royalties. Zhongwei Xu: BIOCELTECH: Equity Ownership, Research Funding.
/
〈 |
|
〉 |