基于自然杀伤细胞的癌症免疫疗法的进展和前景

工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 106-114.

PDF(782 KB)
PDF(782 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 106-114. DOI: 10.1016/j.eng.2018.11.015
研究论文
Research Immunology—Review

基于自然杀伤细胞的癌症免疫疗法的进展和前景

作者信息 +

Natural Killer Cell-Based Immunotherapy for Cancer: Advances and Prospects

Author information +
History +

Abstract

Natural killer (NK) cells are key innate immune cells that provide the first line of defense against viral infection and cancer. Although NK cells can discriminate between “self” and “non-self,” recognize abnormal cells, and eliminate transformed cells and malignancies in real time, tumors develop several strategies to escape from NK cell attack. These strategies include upregulating ligands for the inhibitory receptors of NK cells and producing soluble molecules or immunosuppressive factors. Various types of NK cells are currently being applied in clinical trials, including autologous or allogeneic NK cells, umbilical cord blood (UCB) or induced pluripotent stem cell (iPSC)-derived NK cells, memory-like NK cells, and NK cell line NK-92 cells, for the treatment of different types of tumors. Chimeric antigen receptors (CARs)-NK cells have recently shown great potential due to their redirect specificity and effective antitumor activity. In this review, we summarize the mechanisms of tumor escape from NK cell recognition, the current status and advanced progress of NK cell-based immunotherapy, ways of enhancing the antitumor capacity of NK cells in vivo, and major challenges for clinical practice in this field.

Keywords

Natural killer cell / Immunotherapy / Cancer / Clinical trial / Chimeric antigen receptor

引用本文

导出引用
. . Engineering. 2019, 5(1): 106-114 https://doi.org/10.1016/j.eng.2018.11.015

参考文献

[1]
Cheng M., Chen Y., Xiao W., Sun R., Tian Z.. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013; 10(3): 230-252.
[2]
Xiao T.S.. Innate immunity and inflammation. Cell Mol Immunol. 2017; 14(1): 1-3.
[3]
Long E.O., Kim H.S., Liu D., Peterson M.E., Rajagopalan S.. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol. 2013; 31(1): 227-258.
[4]
Martinet L., Smyth M.J.. Balancing natural killer cell activation through paired receptors. Nat Rev Immunol. 2015; 15(4): 243-254.
[5]
De Pelsmaeker S., Romero N., Vitale M., Favoreel H.W.. Herpesvirus evasion of natural killer cells. J Virol. 2018; 92(11): e02105-17.
[6]
Sun C., Sun H.Y., Xiao W.H., Zhang C., Tian Z.G.. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharmacol Sin. 2015; 36(10): 1191-1199.
[7]
Berry R., Ng N., Saunders P.M., Vivian J.P., Lin J., Deuss F.A., . Targeting of a natural killer cell receptor family by a viral immunoevasin. Nat Immunol. 2013; 14(7): 699-705.
[8]
Peng H., Jiang X., Chen Y., Sojka D.K., Wei H., Gao X., . Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest. 2013; 123(4): 1444-1456.
[9]
Li T., Wang J., Wang Y., Chen Y., Wei H., Sun R., . Respiratory influenza virus infection induces memory-like liver NK cells in mice. J Immunol. 2017; 198(3): 1242-1252.
[10]
Peng H., Sun R.. Liver-resident NK cells and their potential functions. Cell Mol Immunol. 2017; 14: 890-894.
[11]
Peng H., Wisse E., Tian Z.. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol. 2016; 13(3): 328-336.
[12]
Marquardt N., Béziat V., Nyström S., Hengst J., Ivarsson M.A., Kekäläinen E., . Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol. 2015; 194(6): 2467-2471.
[13]
Hydes T., Noll A., Salinas-Riester G., Abuhilal M., Armstrong T., Hamady Z., . IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun Inflamm Dis. 2018; 6(1): 34-46.
[14]
Min-Oo G., Lanier L.L.. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J Exp Med. 2014; 211(13): 2669-2680.
[15]
Foley B., Cooley S., Verneris M.R., Pitt M., Curtsinger J., Luo X., . Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012; 119(11): 2665-2674.
[16]
Liu L.L., Pfefferle A., Yi Sheng V.O., Björklund A.T., Béziat V., Goodridge J.P., . Harnessing adaptive natural killer cells in cancer immunotherapy. Mol Oncol. 2015; 9(10): 1904-1917.
[17]
Romee R., Schneider S.E., Leong J.W., Chase J.M., Keppel C.R., Sullivan R.P., . Cytokine activation induces human memory-like NK cells. Blood. 2012; 120(24): 4751-4760.
[18]
Romee R., Rosario M., Berrien-Elliott M.M., Wagner J.A., Jewell B.A., Schappe T., . Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med. 2016; 8(357): 357ra123.
[19]
Fang F., Xiao W., Tian Z.. NK cell-based immunotherapy for cancer. Semin Immunol. 2017; 31: 37-54.
[20]
Daher M., Rezvani K.. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol. 2018; 51: 146-153.
[21]
Maude S.L., Teachey D.T., Porter D.L., Grupp S.A.. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015; 125(26): 4017-4023.
[22]
Rubnitz J.E., Inaba H., Ribeiro R.C., Pounds S., Rooney B., Bell T., . NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010; 28(6): 955-959.
[23]
Miller J.S., Soignier Y., Panoskaltsis-Mortari A., McNearney S.A., Yun G.H., Fautsch S.K., . Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005; 105(8): 3051-3057.
[24]
Shaffer B.C., Le Luduec J.B., Forlenza C., Jakubowski A.A., Perales M.A., Young J.W., . Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2016; 22(4): 705-709.
[25]
Han K.P., Zhu X., Liu B., Jeng E., Kong L., Yovandich J.L., . IL-15:IL-15 receptor alpha superagonist complex: high-level co-expression in recombinant mammalian cells, purification and characterization. Cytokine. 2011; 56(3): 804-810.
[26]
Xu W., Jones M., Liu B., Zhu X., Johnson C.B., Edwards A.C., . Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor αSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res. 2013; 73(10): 3075-3086.
[27]
Romee R., Cooley S., Berrien-Elliott M.M., Westervelt P., Verneris M.R., Wagner J.E., . First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood. 2018; 131(23): 2515-2527.
[28]
Rosario M., Liu B., Kong L., Collins L.I., Schneider S.E., Chen X., . The IL-15-based ALT-803 complex enhances FcγRIIIa-triggered NK cell responses and in vivo clearance of B cell lymphomas. Clin Cancer Res. 2016; 22(3): 596-608.
[29]
Wagner J.A., Rosario M., Romee R., Berrien-Elliott M.M., Schneider S.E., Leong J.W., . CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 2017; 127(11): 4042-4058.
[30]
Felices M., Chu S., Kodal B., Bendzick L., Ryan C., Lenvik A.J., . IL-15 super-agonist (ALT-803) enhances natural killer (NK) cell function against ovarian cancer. Gynecol Oncol. 2017; 145(3): 453-461.
[31]
Veuillen C., Aurran-Schleinitz T., Castellano R., Rey J., Mallet F., Orlanducci F., . Primary B-CLL resistance to NK cell cytotoxicity can be overcome in vitro and in vivo by priming NK cells and monoclonal antibody therapy. J Clin Immunol. 2012; 32(3): 632-646.
[32]
Reiners K.S., Kessler J., Sauer M., Rothe A., Hansen H.P., Reusch U., . Rescue of impaired NK cell activity in Hodgkin lymphoma with bispecific antibodies in vitro and in patients. Mol Ther. 2013; 21(4): 895-903.
[33]
Paul S., Kulkarni N., Shilpi Lal G.. Intratumoral natural killer cells show reduced effector and cytolytic properties and control the differentiation of effector Th1 cells. OncoImmunology. 2016; 5(12): e1235106.
[34]
Ibrahim E.C., Guerra N., Lacombe M.J., Angevin E., Chouaib S., Carosella E.D., . Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma. Cancer Res. 2001; 61(18): 6838-6845.
[35]
Polakova K., Bandzuchova E., Sabty F.A., Mistrik M., Demitrovicova L., Russ G.. Activation of HLA-G expression by 5-aza’-2-deoxycytidine in malignant hematopoietic cells isolated from leukemia patients. Neoplasma. 2009; 56(6): 514-520.
[36]
Wan R., Wang Z.W., Li H., Peng X.D., Liu G.Y., Ou J.M., . Human leukocyte antigen-G inhibits the anti-tumor effect of natural killer cells via immunoglobulin-like transcript 2 in gastric cancer. Cell Physiol Biochem. 2017; 44(5): 1828-1841.
[37]
Kailayangiri S., Altvater B., Spurny C., Jamitzky S., Schelhaas S., Jacobs A.H., . Targeting Ewing sarcoma with activated and GD2-specific chimeric antigen receptor-engineered human NK cells induces upregulation of immune-inhibitory HLA-G. OncoImmunology. 2017; 6(1): e1250050.
[38]
Maki G., Hayes G.M., Naji A., Tyler T., Carosella E.D., Rouas-Freiss N., . NK resistance of tumor cells from multiple myeloma and chronic lymphocytic leukemia patients: implication of HLA-G. Leukemia. 2008; 22(5): 998-1006.
[39]
Chiu J., Ernst D.M., Keating A.. Acquired natural killer cell dysfunction in the tumor microenvironment of classic Hodgkin lymphoma. Front Immunol. 2018; 9: 267.
[40]
Reiners K.S., Topolar D., Henke A., Simhadri V.R., Kessler J., Sauer M., . Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood. 2013; 121(18): 3658-3665.
[41]
Binici J., Hartmann J., Herrmann J., Schreiber C., Beyer S., Güler G., . A soluble fragment of the tumor antigen BCL2-associated athanogene 6 (BAG-6) is essential and sufficient for inhibition of NKp30 receptor-dependent cytotoxicity of natural killer cells. J Biol Chem. 2013; 288(48): 34295-34303.
[42]
Fernández-Messina L., Ashiru O., Boutet P., Agüera-González S., Skepper J.N., Reyburn H.T., . Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J Biol Chem. 2010; 285(12): 8543-8551.
[43]
Pogge von Strandmann E., Simhadri V.R., von Tresckow B., Sasse S., Reiners K.S., Hansen H.P., . Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity. 2007; 27(6): 965-974.
[44]
Zocchi M.R., Catellani S., Canevali P., Tavella S., Garuti A., Villaggio B., . High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas. Blood. 2012; 119(6): 1479-1489.
[45]
Ferrari de Andrade L., Tay R.E., Pan D., Luoma A.M., Ito Y., Badrinath S., . Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science. 2018; 359(6383): 1537-1542.
[46]
Joyce J.A., Fearon D.T.. T cell exclusion, immune privilege, and the tumor microenvironment. Science. 2015; 348(6230): 74-80.
[47]
Tang H., Qiao J., Fu Y.X.. Immunotherapy and tumor microenvironment. Cancer Lett. 2016; 370(1): 85-90.
[48]
Binnewies M., Roberts E.W., Kersten K., Chan V., Fearon D.F., Merad M., . Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018; 24(5): 541-550.
[49]
Mion F., Tonon S., Valeri V., Pucillo C.E.. Message in a bottle from the tumor microenvironment: tumor-educated DCs instruct B cells to participate in immunosuppression. Cell Mol Immunol. 2017; 14(9): 730-732.
[50]
Baginska J., Viry E., Paggetti J., Medves S., Berchem G., Moussay E., . The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front Immunol. 2013; 4: 490.
[51]
Pietra G., Manzini C., Rivara S., Vitale M., Cantoni C., Petretto A., . Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res. 2012; 72(6): 1407-1415.
[52]
Balsamo M., Scordamaglia F., Pietra G., Manzini C., Cantoni C., Boitano M., . Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci USA. 2009; 106(49): 20847-20852.
[53]
Li H., Han Y., Guo Q., Zhang M., Cao X.. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J Immunol. 2009; 182(1): 240-249.
[54]
Cekic C., Day Y.J., Sag D., Linden J.. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res. 2014; 74(24): 7250-7259.
[55]
Bi J., Tian Z.. NK cell exhaustion. Front Immunol. 2017; 8: 760.
[56]
Sun C., Xu J., Huang Q., Huang M., Wen H., Zhang C., . High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. OncoImmunology. 2017; 6(1): e1264562.
[57]
Zhang Q.F., Yin W.W., Xia Y., Yi Y.Y., He Q.F., Wang X., . Liver-infiltrating CD11bCD27 NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression. Cell Mol Immunol. 2017; 14(10): 819-829.
[58]
Krneta T., Gillgrass A., Chew M., Ashkar A.A.. The breast tumor microenvironment alters the phenotype and function of natural killer cells. Cell Mol Immunol. 2016; 13(5): 628-639.
[59]
Zhang Q., Bi J., Zheng X., Chen Y., Wang H., Wu W., . Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol. 2018; 19(7): 723-732.
[60]
Rosenberg S.A.. Immunotherapy of cancer by systemic administration of lymphoid cells plus interleukin-2. J Biol Response Mod. 1984; 3(5): 501-511.
[61]
Sakamoto N., Ishikawa T., Kokura S., Okayama T., Oka K., Ideno M., . Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med. 2015; 13(1): 277.
[62]
Ruggeri L., Capanni M., Urbani E., Perruccio K., Shlomchik W.D., Tosti A., . Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002; 295(5562): 2097-2100.
[63]
Bachanova V., Burns L.J., McKenna D.H., Curtsinger J., Panoskaltsis-Mortari A., Lindgren B.R., . Allogeneic natural killer cells for refractory lymphoma. Cancer Immunol Immunother. 2010; 59(11): 1739-1744.
[64]
Bachanova V., Sarhan D., DeFor T.E., Cooley S., Panoskaltsis-Mortari A., Blazar B.R., . Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells. Cancer Immunol Immunother. 2018; 67(3): 483-494.
[65]
Björklund A.T., Carlsten M., Sohlberg E., Liu L.L., Clancy T., Karimi M., . Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin Cancer Res. 2018; 24(8): 1834-1844.
[66]
Curti A., Ruggeri L., D’Addio A., Bontadini A., Dan E., Motta M.R., . Successful transfer of alloreactive haploidentical KIR ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood. 2011; 118(12): 3273-3279.
[67]
Geller M.A., Cooley S., Judson P.L., Ghebre R., Carson L.F., Argenta P.A., . A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy. 2011; 13(1): 98-107.
[68]
Ishikawa T., Okayama T., Sakamoto N., Ideno M., Oka K., Enoki T., . Phase I clinical trial of adoptive transfer of expanded natural killer cells in combination with IgG1 antibody in patients with gastric or colorectal cancer. Int J Cancer. 2018; 142(12): 2599-2609.
[69]
Lee D.A., Denman C.J., Rondon G., Woodworth G., Chen J., Fisher T., . Haploidentical natural killer cells infused before allogeneic stem cell transplantation for myeloid malignancies: a phase I trial. Biol Blood Marrow Transplant. 2016; 22(7): 1290-1298.
[70]
Adotevi O., Godet Y., Galaine J., Lakkis Z., Idirene I., Certoux J.M., . In situ delivery of allogeneic natural killer cell (NK) combined with Cetuximab in liver metastases of gastrointestinal carcinoma: a phase I clinical trial. OncoImmunology. 2018; 7(5): e1424673.
[71]
Ciurea S.O., Schafer J.R., Bassett R., Denman C.J., Cao K., Willis D., . Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017; 130(16): 1857-1868.
[72]
Bachanova V., Cooley S., Defor T.E., Verneris M.R., Zhang B., McKenna D.H., . Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood. 2014; 123(25): 3855-3863.
[73]
Pillet A.H., Thèze J., Rose T.. Interleukin (IL)-2 and IL-15 have different effects on human natural killer lymphocytes. Hum Immunol. 2011; 72(11): 1013-1017.
[74]
Chen Y., Chen B., Yang T., Xiao W., Qian L., Ding Y., . Human fused NKG2D-IL-15 protein controls xenografted human gastric cancer through the recruitment and activation of NK cells. Cell Mol Immunol. 2017; 14(3): 293-307.
[75]
Spanholtz J., Tordoir M., Eissens D., Preijers F., van der Meer A., Joosten I., . High log-scale expansion of functional human natural killer cells from umbilical cord blood CD34-positive cells for adoptive cancer immunotherapy. PLoS ONE. 2010; 5(2): e9221.
[76]
Knorr D.A., Ni Z., Hermanson D., Hexum M.K., Bendzick L., Cooper L.J., . Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl Med. 2013; 2(4): 274-283.
[77]
Herrera L., Salcedo J.M., Santos S., Vesga M.A., Borrego F., Eguizabal C.. OP9 feeder cells are superior to M2–10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front Immunol. 2017; 8: 755.
[78]
Hermanson D.L., Bendzick L., Pribyl L., McCullar V., Vogel R.I., Miller J.S., . Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells. 2016; 34(1): 93-101.
[79]
Zeng J., Tang S.Y., Toh L.L., Wang S.. Generation of “off-the-shelf” natural killer cells from peripheral blood cell-derived induced pluripotent stem cells. Stem Cell Rep. 2017; 9(6): 1796-1812.
[80]
Xing D., Ramsay A.G., Gribben J.G., Decker W.K., Burks J.K., Munsell M., . Cord blood natural killer cells exhibit impaired lytic immunological synapse formation that is reversed with IL-2 ex vivo expansion. J Immunother. 2010; 33(7): 684-696.
[81]
Veluchamy J.P., Lopez-Lastra S., Spanholtz J., Bohme F., Kok N., Heideman D.A., . In vivo efficacy of umbilical cord blood stem cell-derived NK cells in the treatment of metastatic colorectal cancer. Front Immunol. 2017; 8: 87.
[82]
Ichise H., Nagano S., Maeda T., Miyazaki M., Miyazaki Y., Kojima H., . NK cell alloreactivity against KIR-ligand-mismatched HLA-haploidentical tissue derived from HLA haplotype-homozygous iPSCs. Stem Cell Rep. 2017; 9(3): 853-867.
[83]
Lehmann D., Spanholtz J., Sturtzel C., Tordoir M., Schlechta B., Groenewegen D., . IL-12 directs further maturation of ex vivo differentiated NK cells with improved therapeutic potential. PLoS ONE. 2014; 9(1): e87131.
[84]
Veluchamy J.P., Heeren A.M., Spanholtz J., van Eendenburg J.D., Heideman D.A., Kenter G.G., . High-efficiency lysis of cervical cancer by allogeneic NK cells derived from umbilical cord progenitors is independent of HLA status. Cancer Immunol Immunother. 2017; 66(1): 51-61.
[85]
Boudreau J.E., Hsu K.C.. Natural killer cell education in human health and disease. Curr Opin Immunol. 2018; 50: 102-111.
[86]
Boudreau J.E., Hsu K.C.. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol. 2018; 39(3): 222-239.
[87]
Sarvaria A., Jawdat D., Madrigal J.A., Saudemont A.. Umbilical cord blood natural killer cells, their characteristics, and potential clinical applications. Front Immunol. 2017; 8: 329.
[88]
He Y., Tian Z.. NK cell education via nonclassical MHC and non-MHC ligands. Cell Mol Immunol. 2017; 14(4): 321-330.
[89]
Tam Y.K., Miyagawa B., Ho V.C., Klingemann H.G.. Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92. J Hematother. 1999; 8(3): 281-290.
[90]
Cheng M., Zhang J., Jiang W., Chen Y., Tian Z.. Natural killer cell lines in tumor immunotherapy. Front Med. 2012; 6(1): 56-66.
[91]
Cheng M., Ma J., Chen Y., Zhang J., Zhao W., Zhang J., . Establishment, characterization, and successful adaptive therapy against human tumors of NKG cell, a new human NK cell line. Cell Transplant. 2011; 20(11–12): 1731-1746.
[92]
Tonn T., Becker S., Esser R., Schwabe D., Seifried E.. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res. 2001; 10(4): 535-544.
[93]
Arai S., Meagher R., Swearingen M., Myint H., Rich E., Martinson J., . Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy. 2008; 10(6): 625-632.
[94]
Tonn T., Schwabe D., Klingemann H.G., Becker S., Esser R., Koehl U., . Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013; 15(12): 1563-1570.
[95]
Boyiadzis M., Agha M., Redner R.L., Sehgal A., Im A., Hou J.Z., . Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy. 2017; 19(10): 1225-1232.
[96]
Gong J.H., Maki G., Klingemann H.G.. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994; 8(4): 652-658.
[97]
Paul S., Lal G.. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017; 8: 1124.
[98]
Ni J., Miller M., Stojanovic A., Garbi N., Cerwenka A.. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J Exp Med. 2012; 209(13): 2351-2365.
[99]
Leong J.W., Chase J.M., Romee R., Schneider S.E., Sullivan R.P., Cooper M.A., . Preactivation with IL-12, IL-15, and IL-18 induces CD25 and a functional high-affinity IL-2 receptor on human cytokine-induced memory-like natural killer cells. Biol Blood Marrow Transplant. 2014; 20(4): 463-473.
[100]
Newhook N., Fudge N., Grant M.. NK cells generate memory-type responses to human cytomegalovirus-infected fibroblasts. Eur J Immunol. 2017; 47(6): 1032-1039.
[101]
Bigley A.B., Rezvani K., Shah N., Sekine T., Balneger N., Pistillo M., . Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clin Exp Immunol. 2016; 185(2): 239-251.
[102]
Liu L.L., Béziat V., Oei V.Y.S., Pfefferle A., Schaffer M., Lehmann S., . Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res. 2017; 5(8): 654-665.
[103]
Peng H., Tian Z.. Natural killer cell memory: progress and implications. Front Immunol. 2017; 8: 1143.
[104]
Oei V.Y.S., Siernicka M., Graczyk-Jarzynka A., Hoel H.J., Yang W., Palacios D., . Intrinsic functional potential of NK-cell subsets constrains retargeting driven by chimeric antigen receptors. Cancer Immunol Res. 2018; 6(4): 467-480.
[105]
Peng H., Tian Z.. Tissue-resident natural killer cells in the livers. Sci China Life Sci. 2016; 59(12): 1218-1223.
[106]
Robinson M.W., Harmon C., O’Farrelly C.. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016; 13(3): 267-276.
[107]
Jackson H.J., Rafiq S., Brentjens R.J.. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016; 13(6): 370-383.
[108]
Johnson L.A., June C.H.. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2017; 27(1): 38-58.
[109]
Bedoya F., Frigault M.J., Maus M.V.. The flipside of the power of engineered T cells: observed and potential toxicities of genetically modified T cells as therapy. Mol Ther. 2017; 25(2): 314-320.
[110]
Hu Y., Tian Z.G., Zhang C.. Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacol Sin. 2018; 39(2): 167-176.
[111]
Han J., Chu J., Keung Chan W., Zhang J., Wang Y., Cohen J.B., . CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci Rep. 2015; 5(1): 11483.
[112]
Yu M., Luo H., Fan M., Wu X., Shi B., Di S., . Development of GPC3-specific chimeric antigen receptor-engineered natural killer cells for the treatment of hepatocellular carcinoma. Mol Ther. 2018; 26(2): 366-378.
[113]
Shimasaki N., Fujisaki H., Cho D., Masselli M., Lockey T., Eldridge P., . A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy. 2012; 14(7): 830-840.
[114]
Oelsner S., Friede M.E., Zhang C., Wagner J., Badura S., Bader P., . Continuously expanding CAR NK-92 cells display selective cytotoxicity against B-cell leukemia and lymphoma. Cytotherapy. 2017; 19(2): 235-249.
[115]
Müller T., Uherek C., Maki G., Chow K.U., Schimpf A., Klingemann H.G., . Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother. 2008; 57(3): 411-423.
[116]
Schirrmann T., Pecher G.. Specific targeting of CD33+ leukemia cells by a natural killer cell line modified with a chimeric receptor. Leuk Res. 2005; 29(3): 301-306.
[117]
Jiang H., Zhang W., Shang P., Zhang H., Fu W., Ye F., . Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 2014; 8(2): 297-310.
[118]
Chu J., Deng Y., Benson D.M., He S., Hughes T., Zhang J., . CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 2014; 28(4): 917-927.
[119]
Uherek C., Tonn T., Uherek B., Becker S., Schnierle B., Klingemann H.G., . Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood. 2002; 100(4): 1265-1273.
[120]
Töpfer K., Cartellieri M., Michen S., Wiedemuth R., Müller N., Lindemann D., . DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J Immunol. 2015; 194(7): 3201-3212.
[121]
Zhang C., Burger M.C., Jennewein L., Genßler S., Schönfeld K., Zeiner P., . ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. 2015; 108(5): djv375.
[122]
Zhang G., Liu R., Zhu X., Wang L., Ma J., Han H., . Retargeting NK-92 for anti-melanoma activity by a TCR-like single-domain antibody. Immunol Cell Biol. 2013; 91(10): 615-624.
[123]
Müller N., Michen S., Tietze S., Töpfer K., Schulte A., Lamszus K., . Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J Immunother. 2015; 38(5): 197-210.
[124]
Liu E., Tong Y., Dotti G., Shaim H., Savoldo B., Mukherjee M., . Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018; 32(2): 520-531.
[125]
Altvater B., Landmeier S., Pscherer S., Temme J., Schweer K., Kailayangiri S., . 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin Cancer Res. 2009; 15(15): 4857-4866.
[126]
Li Y., Hermanson D.L., Moriarity B.S., Kaufman D.S.. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell. 2018; 23(2): 181-192.
[127]
Hsu J., Hodgins J.J., Marathe M., Nicolai C.J., Bourgeois-Daigneault M.C., Trevino T.N., . Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018; 128(10): 4654-4668.
[128]
Pesce S., Greppi M., Tabellini G., Rampinelli F., Parolini S., Olive D., . Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol. 2017; 139(1): 335-346.
[129]
Dougall W.C., Kurtulus S., Smyth M.J., Anderson A.C.. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 2017; 276(1): 112-120.
[130]
Chew G.M., Fujita T., Webb G.M., Burwitz B.J., Wu H.L., Reed J.S., . TIGIT marks exhausted t cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog. 2016; 12(1): e1005349.
[131]
Chauvin J.M., Pagliano O., Fourcade J., Sun Z., Wang H., Sander C., . TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest. 2015; 125(5): 2046-2058.
[132]
Da Silva I.P., Gallois A., Jimenez-Baranda S., Khan S., Anderson A.C., Kuchroo V.K., . Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res. 2014; 2(5): 410-422.
[133]
Guillerey C., Huntington N.D., Smyth M.J.. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016; 17(9): 1025-1036.
Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81788101, 81761128013, 81771686, 81472646, 91842305, 31390443, and 91542000) and the Chinese Academy of Science (XDB29030000).

Compliance with ethics guidelines

Yuan Hu, Zhigang Tian, and Cai Zhang declare that they have no conflict of interest or financial conflicts to disclose.

版权

2019 THE AUTHORS
PDF(782 KB)

Accesses

Citation

Detail

段落导航
相关文章

/