
利用异源酶组合构建酿酒酵母中咖啡酸的生物合成
Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations
Engineering the biosynthesis of plant-derived natural products in microbes presents several challenges, especially when the expression and activation of the plant cytochrome P450 enzyme is required. By recruiting two enzymes—HpaB and HpaC—from several bacteria, we constructed functional 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H) in Saccharomyces cerevisiae to take on a role similar to that of the plant-derived cytochrome P450 enzyme and produce caffeic acid. Along with a common tyrosine ammonia lyase (TAL), the different combinations of HpaB and HpaC presented varied capabilities in producing the target product, caffeic acid, from the substrate, L-tyrosine. The highest production of caffeic acid was obtained with the enzyme combination of HpaB from Pseudomonas aeruginosa and HpaC from Salmonella enterica, which yielded up to (289.4 ± 4.6) mg·L−1 in shake-flask cultivation. The compatibility of heterologous enzymes within a yeast chassis was effectively improved, as the caffeic acid production was increased by 40 times from the initial yield. Six key amino acid residues around the flavin adenine dinucleotide (FAD) binding domain in HpaB from Pseudomonas aeruginosa were differentiate from those other HpaBs, and might play critical roles in affecting enzyme activity. We have thus established an effective approach to construct a highly efficient yeast system to synthesize non-native hydroxylated phenylpropanoids.
Saccharomyces cerevisiae / Caffeic acid / Heterologous enzyme / Cytochrome P450 / Synthetic biology
[1] |
Galanie S., Thodey K., Trenchard I.J., Filsinger Interrante M., Smolke C.D.. Complete biosynthesis of opioids in yeast. Science. 2015; 349(6252): 1095-1100.
|
[2] |
Martin V.J., Pitera D.J., Withers S.T., Newman J.D., Keasling J.D.. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003; 21(7): 796-802.
|
[3] |
Ro D.K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L., Ndungu J.M.,
|
[4] |
Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D.,
|
[5] |
Ajikumar P.K., Xiao W.H., Tyo K.E., Wang Y., Simeon F., Leonard E.,
|
[6] |
Zhou K., Qiao K., Edgar S., Stephanopoulos G.. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015; 33(4): 377-383.
|
[7] |
Nakagawa A., Matsumura E., Koyanagi T., Katayama T., Kawano N., Yoshimatsu K.,
|
[8] |
Liu D., Li B., Liu H., Li B.Z., Yuan Y.J.. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Front Chem Sci Eng. 2017; 11(1): 1-9.
|
[9] |
Lin Y., Yan Y.. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb Cell Fact. 2012; 11(1): 42.
|
[10] |
Rodrigues J.L., Araújo R.G., Prather K.L., Kluskens L.D., Rodrigues L.R.. Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme Microb Technol. 2015; 71: 36-44.
|
[11] |
Yoshimoto M., Kurata-Azuma R., Fujii M., Hou D.X., Ikeda K., Yoshidome T.,
|
[12] |
Sachan A., Ghosh S., Sen S.K., Mitra A.. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638. Appl Microbiol Biotechnol. 2006; 71(5): 720-727.
|
[13] |
De Campos Buzzi F, Franzoi C.L., Antonini G., Fracasso M., Cechinel Filho V., Yunes R.A.,
|
[14] |
Wu J., Omene C., Karkoszka J., Bosland M., Eckard J., Klein C.B.,
|
[15] |
Xing Y., Peng H.Y., Zhang M.X., Li X., Zeng W.W., Yang X.E.. Caffeic acid product from the highly copper-tolerant plant Elsholtzia splendens post-phytoremediation: its extraction, purification, and identification. J Zhejiang Univ Sci B. 2012; 13(6): 487-493.
|
[16] |
Celik S., Erdogan S., Tuzcu M.. Caffeic acid phenethyl ester (CAPE) exhibits significant potential as an antidiabetic and liver-protective agent in streptozotocin-induced diabetic rats. Pharmacol Res. 2009; 60(4): 270-276.
|
[17] |
Bourgaud F., Hehn A., Larbat R., Doerper S., Gontier E., Kellner S.,
|
[18] |
Nakamura S., Minami A., Fujimoto K., Kojima T.. Combination effect of recombinant human interleukin-1 alpha with antimicrobial agents. Antimicrob Agents Chemother. 1989; 33(10): 1804-1810.
|
[19] |
Cheniany M., Ganjeali A.. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots. Acta Biol Hung. 2016; 67(4): 379-392.
|
[20] |
Kim Y.H., Kwon T., Yang H.J., Kim W., Youn H., Lee J.Y.,
|
[21] |
Ro D.K., Mah N., Ellis B.E., Douglas C.J.. Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol. 2001; 126(1): 317-329.
|
[22] |
Li M., Schneider K., Kristensen M., Borodina I., Nielsen J.. Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep. 2016; 6(1): 36827.
|
[23] |
Zhang H., Stephanopoulos G.. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol. 2013; 97(8): 3333-3341.
|
[24] |
Yao Y.F., Wang C.S., Qiao J., Zhao G.R.. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway. Metab Eng. 2013; 19: 79-87.
|
[25] |
Huang Q., Lin Y., Yan Y.. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng. 2013; 110(12): 3188-3196.
|
[26] |
Prieto M.A., Garcia J.L.. Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem. 1994; 269(36): 22823-22829.
|
[27] |
Heckman K.L., Pease L.R.. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc. 2007; 2(4): 924-932.
|
[28] |
Gietz R.D., Woods R.A.. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol. 2006; 313: 107-120.
|
[29] |
Nell R.E., Phillips R.H.. Contributions of brewers’ yeast to a diet deficient in reproductive factors. J Nutr. 1950; 42(1): 117-127.
|
[30] |
Liu Z., Fu J., Shan L., Sun Q., Zhang W.. Synthesis, preliminary bioevaluation and computational analysis of caffeic acid analogues. Int J Mol Sci. 2014; 15(5): 8808-8820.
|
[31] |
Xiao P., Zhang S., Ma H., Zhang A., Lv X., Zheng L.. Stereoselective synthesis of caffeic acid amides via enzyme-catalyzed asymmetric aminolysis reaction. J Biotechnol. 2013; 168(4): 552-559.
|
[32] |
Zhang W., Liu H., Li X., Liu D., Dong X.T., Li F.F.,
|
[33] |
Rodriguez A., Kildegaard K.R., Li M., Borodina I., Nielsen J.. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng. 2015; 31: 181-188.
|
[34] |
Kim E., Moore B.S., Yoon Y.J.. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat Chem Biol. 2015; 11(9): 649-659.
|
[35] |
Sarria S., Wong B., García Martín H., Keasling J.D., Peralta-Yahya P.. Microbial synthesis of pinene. ACS Synth Biol. 2014; 3(7): 466-475.
|
[36] |
Zhao S., Jones J.A., Lachance D.M., Bhan N., Khalidi O., Venkataraman S.,
|
[37] |
Xun L., Sandvik E.R.. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Appl Environ Microbiol. 2000; 66(2): 481-486.
|
[38] |
Galán B., Díaz E., Prieto M.A., García J.L.. Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin:NAD(P)H reductase subfamily. J Bacteriol. 2000; 182(3): 627-636.
|
[39] |
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H.,
|
[40] |
Luo Y., Li B.Z., Liu D., Zhang L., Chen Y., Jia B.,
|
[41] |
Choi O., Wu C.Z., Kang S.Y., Ahn J.S., Uhm T.B., Hong Y.S.. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol. 2011; 38(10): 1657-1665.
|
[42] |
Kang S.Y., Choi O., Lee J.K., Hwang B.Y., Uhm T.B., Hong Y.S.. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microb Cell Fact. 2012; 11(1): 153.
|
[43] |
Chai F., Wang Y., Mei X., Yao M., Chen Y., Liu H.,
|
This work was funded by the Ministry of Science and Technology of China (2014CB745100) and the National Natural Science Foundation of China (21390203 and 21706186).
Lanqing Liu, Hong Liu, Wei Zhang, Mingdong Yao, Bingzhi Li, Duo Liu, and Yingjin Yuan declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |