利用异源酶组合构建酿酒酵母中咖啡酸的生物合成

工程(英文) ›› 2019, Vol. 5 ›› Issue (2) : 287-295.

PDF(2376 KB)
PDF(2376 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (2) : 287-295. DOI: 10.1016/j.eng.2018.11.029
研究论文
Research Synthetic Biology—Article

利用异源酶组合构建酿酒酵母中咖啡酸的生物合成

作者信息 +

Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations

Author information +
History +

Abstract

Engineering the biosynthesis of plant-derived natural products in microbes presents several challenges, especially when the expression and activation of the plant cytochrome P450 enzyme is required. By recruiting two enzymes—HpaB and HpaC—from several bacteria, we constructed functional 4-hydroxyphenylacetate 3-hydroxylase (4HPA3H) in Saccharomyces cerevisiae to take on a role similar to that of the plant-derived cytochrome P450 enzyme and produce caffeic acid. Along with a common tyrosine ammonia lyase (TAL), the different combinations of HpaB and HpaC presented varied capabilities in producing the target product, caffeic acid, from the substrate, L-tyrosine. The highest production of caffeic acid was obtained with the enzyme combination of HpaB from Pseudomonas aeruginosa and HpaC from Salmonella enterica, which yielded up to (289.4 ± 4.6) mg·L−1 in shake-flask cultivation. The compatibility of heterologous enzymes within a yeast chassis was effectively improved, as the caffeic acid production was increased by 40 times from the initial yield. Six key amino acid residues around the flavin adenine dinucleotide (FAD) binding domain in HpaB from Pseudomonas aeruginosa were differentiate from those other HpaBs, and might play critical roles in affecting enzyme activity. We have thus established an effective approach to construct a highly efficient yeast system to synthesize non-native hydroxylated phenylpropanoids.

Keywords

Saccharomyces cerevisiae / Caffeic acid / Heterologous enzyme / Cytochrome P450 / Synthetic biology

引用本文

导出引用
. . Engineering. 2019, 5(2): 287-295 https://doi.org/10.1016/j.eng.2018.11.029

参考文献

[1]
Galanie S., Thodey K., Trenchard I.J., Filsinger Interrante M., Smolke C.D.. Complete biosynthesis of opioids in yeast. Science. 2015; 349(6252): 1095-1100.
[2]
Martin V.J., Pitera D.J., Withers S.T., Newman J.D., Keasling J.D.. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003; 21(7): 796-802.
[3]
Ro D.K., Paradise E.M., Ouellet M., Fisher K.J., Newman K.L., Ndungu J.M., . Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 2006; 440(7086): 940-943.
[4]
Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., . High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013; 496(7446): 528-532.
[5]
Ajikumar P.K., Xiao W.H., Tyo K.E., Wang Y., Simeon F., Leonard E., . Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 2010; 330(6000): 70-74.
[6]
Zhou K., Qiao K., Edgar S., Stephanopoulos G.. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015; 33(4): 377-383.
[7]
Nakagawa A., Matsumura E., Koyanagi T., Katayama T., Kawano N., Yoshimatsu K., . Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat Commun. 2016; 7(1): 10390.
[8]
Liu D., Li B., Liu H., Li B.Z., Yuan Y.J.. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Front Chem Sci Eng. 2017; 11(1): 1-9.
[9]
Lin Y., Yan Y.. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb Cell Fact. 2012; 11(1): 42.
[10]
Rodrigues J.L., Araújo R.G., Prather K.L., Kluskens L.D., Rodrigues L.R.. Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme Microb Technol. 2015; 71: 36-44.
[11]
Yoshimoto M., Kurata-Azuma R., Fujii M., Hou D.X., Ikeda K., Yoshidome T., . Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives. Biosci Biotechnol Biochem. 2005; 69(9): 1777-1781.
[12]
Sachan A., Ghosh S., Sen S.K., Mitra A.. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638. Appl Microbiol Biotechnol. 2006; 71(5): 720-727.
[13]
De Campos Buzzi F, Franzoi C.L., Antonini G., Fracasso M., Cechinel Filho V., Yunes R.A., . Antinociceptive properties of caffeic acid derivatives in mice. Eur J Med Chem. 2009; 44(11): 4596-4602.
[14]
Wu J., Omene C., Karkoszka J., Bosland M., Eckard J., Klein C.B., . Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett. 2011; 308(1): 43-53.
[15]
Xing Y., Peng H.Y., Zhang M.X., Li X., Zeng W.W., Yang X.E.. Caffeic acid product from the highly copper-tolerant plant Elsholtzia splendens post-phytoremediation: its extraction, purification, and identification. J Zhejiang Univ Sci B. 2012; 13(6): 487-493.
[16]
Celik S., Erdogan S., Tuzcu M.. Caffeic acid phenethyl ester (CAPE) exhibits significant potential as an antidiabetic and liver-protective agent in streptozotocin-induced diabetic rats. Pharmacol Res. 2009; 60(4): 270-276.
[17]
Bourgaud F., Hehn A., Larbat R., Doerper S., Gontier E., Kellner S., . Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev. 2006; 5(2–3): 293-308.
[18]
Nakamura S., Minami A., Fujimoto K., Kojima T.. Combination effect of recombinant human interleukin-1 alpha with antimicrobial agents. Antimicrob Agents Chemother. 1989; 33(10): 1804-1810.
[19]
Cheniany M., Ganjeali A.. Developmental role of phenylalanine-ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) genes during adventitious rooting of Juglans regia L. microshoots. Acta Biol Hung. 2016; 67(4): 379-392.
[20]
Kim Y.H., Kwon T., Yang H.J., Kim W., Youn H., Lee J.Y., . Gene engineering, purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein. Protein Expr Purif. 2011; 79(1): 149-155.
[21]
Ro D.K., Mah N., Ellis B.E., Douglas C.J.. Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol. 2001; 126(1): 317-329.
[22]
Li M., Schneider K., Kristensen M., Borodina I., Nielsen J.. Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep. 2016; 6(1): 36827.
[23]
Zhang H., Stephanopoulos G.. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol. 2013; 97(8): 3333-3341.
[24]
Yao Y.F., Wang C.S., Qiao J., Zhao G.R.. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway. Metab Eng. 2013; 19: 79-87.
[25]
Huang Q., Lin Y., Yan Y.. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng. 2013; 110(12): 3188-3196.
[26]
Prieto M.A., Garcia J.L.. Molecular characterization of 4-hydroxyphenylacetate 3-hydroxylase of Escherichia coli. A two-protein component enzyme. J Biol Chem. 1994; 269(36): 22823-22829.
[27]
Heckman K.L., Pease L.R.. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc. 2007; 2(4): 924-932.
[28]
Gietz R.D., Woods R.A.. Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol. 2006; 313: 107-120.
[29]
Nell R.E., Phillips R.H.. Contributions of brewers’ yeast to a diet deficient in reproductive factors. J Nutr. 1950; 42(1): 117-127.
[30]
Liu Z., Fu J., Shan L., Sun Q., Zhang W.. Synthesis, preliminary bioevaluation and computational analysis of caffeic acid analogues. Int J Mol Sci. 2014; 15(5): 8808-8820.
[31]
Xiao P., Zhang S., Ma H., Zhang A., Lv X., Zheng L.. Stereoselective synthesis of caffeic acid amides via enzyme-catalyzed asymmetric aminolysis reaction. J Biotechnol. 2013; 168(4): 552-559.
[32]
Zhang W., Liu H., Li X., Liu D., Dong X.T., Li F.F., . Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Eng. Life Sci. 2017; 17(9): 1021-1029.
[33]
Rodriguez A., Kildegaard K.R., Li M., Borodina I., Nielsen J.. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng. 2015; 31: 181-188.
[34]
Kim E., Moore B.S., Yoon Y.J.. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat Chem Biol. 2015; 11(9): 649-659.
[35]
Sarria S., Wong B., García Martín H., Keasling J.D., Peralta-Yahya P.. Microbial synthesis of pinene. ACS Synth Biol. 2014; 3(7): 466-475.
[36]
Zhao S., Jones J.A., Lachance D.M., Bhan N., Khalidi O., Venkataraman S., . Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab Eng. 2015; 28: 43-53.
[37]
Xun L., Sandvik E.R.. Characterization of 4-hydroxyphenylacetate 3-hydroxylase (HpaB) of Escherichia coli as a reduced flavin adenine dinucleotide-utilizing monooxygenase. Appl Environ Microbiol. 2000; 66(2): 481-486.
[38]
Galán B., Díaz E., Prieto M.A., García J.L.. Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin:NAD(P)H reductase subfamily. J Bacteriol. 2000; 182(3): 627-636.
[39]
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., . Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23(21): 2947-2948.
[40]
Luo Y., Li B.Z., Liu D., Zhang L., Chen Y., Jia B., . Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev. 2015; 44(15): 5265-5290.
[41]
Choi O., Wu C.Z., Kang S.Y., Ahn J.S., Uhm T.B., Hong Y.S.. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol. 2011; 38(10): 1657-1665.
[42]
Kang S.Y., Choi O., Lee J.K., Hwang B.Y., Uhm T.B., Hong Y.S.. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microb Cell Fact. 2012; 11(1): 153.
[43]
Chai F., Wang Y., Mei X., Yao M., Chen Y., Liu H., . Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Microb Cell Fact. 2017; 16(1): 54.
Acknowledgements

This work was funded by the Ministry of Science and Technology of China (2014CB745100) and the National Natural Science Foundation of China (21390203 and 21706186).

Compliance with ethics guidelines

Lanqing Liu, Hong Liu, Wei Zhang, Mingdong Yao, Bingzhi Li, Duo Liu, and Yingjin Yuan declare that they have no conflict of interest or financial conflicts to disclose.

版权

2019 Chinese Academy of Engineering
PDF(2376 KB)

Accesses

Citation

Detail

段落导航
相关文章

/