调节性T细胞及其在抗肿瘤免疫疗法中的临床应用

工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 132-139.

PDF(1072 KB)
PDF(1072 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 132-139. DOI: 10.1016/j.eng.2018.12.002
研究论文
Research Immunology—Review

调节性T细胞及其在抗肿瘤免疫疗法中的临床应用

作者信息 +

Regulatory T Cells and Their Clinical Applications in Antitumor Immunotherapy

Author information +
History +

Abstract

Cancer is a potentially life-threatening disease characterized by the immortalization of tumor cells in the host. Immunotherapy has recently gained increasing interest among researchers due to its tremendous potential for preventing tumor progression and metastasis. Regulatory T cells (Tregs) are a subgroup of suppressive CD4+ T cells that play a vital role in the maintenance of host immune homeostasis. Treg deficiency can induce severe autoimmune, hypersensitivity, and auto-inflammatory disorders, among other diseases. Tregs are commonly enriched in a tumor microenvironment, and a greater number of immune-suppressive Tregs often indicates a poorer prognosis; therefore, there is renewed interest in the function of Tregs and in their clinical application in antitumor immunotherapy. Accumulating strategies that focus on the depletion of Tregs have appeared to be effective in antitumor immunity. It is expected that Treg-targeting strategies will provide great opportunities for improving antitumor efficiency in combination with other therapeutics (e.g., chimeric antigen receptor T cell (CAR-T)-based cell therapy or immune checkpoint blockading).

Keywords

Regulatory T cells / Cancer / Immunotherapy

引用本文

导出引用
. . Engineering. 2019, 5(1): 132-139 https://doi.org/10.1016/j.eng.2018.12.002

参考文献

[1]
Prise K.M., O’Sullivan J.M.. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009; 9(5): 351-360.
[2]
Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., . Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363(8): 711-723.
[3]
Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., . Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012; 366(26): 2443-2454.
[4]
Topalian S.L., Sznol M., McDermott D.F., Kluger H.M., Carvajal R.D., Sharfman W.H., . Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014; 32(10): 1020-1030.
[5]
Rizvi N.A., Mazières J., Planchard D., Stinchcombe T.E., Dy G.K., Antonia S.J., . Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015; 16(3): 257-265.
[6]
Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., . Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015; 373(17): 1627-1639.
[7]
Brahmer J.R., Drake C.G., Wollner I., Powderly J.D., Picus J., Sharfman W.H., . Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010; 28(19): 3167-3175.
[8]
Locke F.L., Neelapu S.S., Bartlett N.L., Siddiqi T., Chavez J.C., Hosing C.M., . Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017; 25(1): 285-295.
[9]
Topalian S.L., Drake C.G., Pardoll D.M.. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015; 27(4): 450-461.
[10]
Shimizu J., Yamazaki S., Sakaguchi S.. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol. 1999; 163(10): 5211-5218.
[11]
Jordan M.S., Boesteanu A., Reed A.J., Petrone A.L., Holenbeck A.E., Lerman M.A., . Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001; 2(4): 301-306.
[12]
Arce Vargas F., Furness A.J.S., Solomon I., Joshi K., Mekkaoui L., Lesko M.H., . Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity. 2017; 46(4): 577-586.
[13]
Mucida D., Park Y., Kim G., Turovskaya O., Scott I., Kronenberg M., . Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science. 2007; 317(5835): 256-260.
[14]
Chen W., Jin W., Hardegen N., Lei K.J., Li L., Marinos N., . Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med. 2003; 198(12): 1875-1886.
[15]
Munn D.H., Sharma M.D., Lee J.R., Jhaver K.G., Johnson T.S., Keskin D.B., . Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 2002; 297(5588): 1867-1870.
[16]
Kim Y.C., Bhairavabhotla R., Yoon J., Golding A., Thornton A.M., Tran D.Q., . Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood. 2012; 119(12): 2810-2818.
[17]
Yadav M., Louvet C., Davini D., Gardner J.M., Martinez-Llordella M., Bailey-Bucktrout S., . Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med. 2012; 209(10): 1713-1722.
[18]
Okamura T., Fujio K., Sumitomo S., Yamamoto K.. Roles of LAG3 and EGR2 in regulatory T cells. Ann Rheum Dis. 2012; 71(Suppl. 2): i96-100.
[19]
Kim J.K., Klinger M., Benjamin J., Xiao Y., Erle D.J., Littman D.R., . Impact of the TCR signal on regulatory T cell homeostasis, function, and trafficking. PLoS One. 2009; 4(8): e6580.
[20]
Kronenberg M., Rudensky A.. Regulation of immunity by self-reactive T cells. Nature. 2005; 435(7042): 598-604.
[21]
Salomon B., Lenschow D.J., Rhee L., Ashourian N., Singh B., Sharpe A., . B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000; 12(4): 431-440.
[22]
Tai X., Cowan M., Feigenbaum L., Singer A.. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol. 2005; 6(2): 152-162.
[23]
D’Cruz L.M., Klein L.. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005; 6(11): 1152-1159.
[24]
Ruan Q., Kameswaran V., Tone Y., Li L., Liou H.C., Greene M.I., . Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity. 2009; 31(6): 932-940.
[25]
Akiyama T., Maeda S., Yamane S., Ogino K., Kasai M., Kajiura F., . Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science. 2005; 308(5719): 248-251.
[26]
Overacre-Delgoffe A.E., Chikina M., Dadey R.E., Yano H., Brunazzi E.A., Shayan G., . Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell. 2017; 169(6): :1130–41.e11
[27]
Fontenot J.D., Gavin M.A., Rudensky A.Y.. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003; 4(4): 330-336.
[28]
Chen G.Y., Chen C., Wang L., Chang X., Zheng P., Liu Y.. Cutting edge: broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol. 2008; 180(8): 5163-5166.
[29]
Kalekar L.A., Mueller D.L.. Relationship between CD4 regulatory T cells and anergy in vivo. J Immunol. 2017; 198(7): 2527-2533.
[30]
Ohkura N., Hamaguchi M., Morikawa H., Sugimura K., Tanaka A., Ito Y., . T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 2012; 37(5): 785-799.
[31]
Povoleri G.A., Scottà C., Nova-Lamperti E.A., John S., Lombardi G., Afzali B.. Thymic versus induced regulatory T cells—who regulates the regulators?. Front Immunol. 2013; 4: 169.
[32]
Zheng Y., Josefowicz S., Chaudhry A., Peng X.P., Forbush K., Rudensky A.Y.. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010; 463(7282): 808-812.
[33]
Yao Z., Kanno Y., Kerenyi M., Stephens G., Durant L., Watford W.T., . Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007; 109(10): 4368-4375.
[34]
Nagar M., Vernitsky H., Cohen Y., Dominissini D., Berkun Y., Rechavi G., . Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25-CD4+ T cells. Int Immunol. 2008; 20(8): 1041-1055.
[35]
Ouyang W., Beckett O., Ma Q., Paik J.H., DePinho R.A., Li M.O.. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol. 2010; 11(7): 618-627.
[36]
Chen Z., Barbi J., Bu S., Yang H.Y., Li Z., Gao Y., . The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013; 39(2): 272-285.
[37]
van Loosdregt J., Fleskens V., Fu J., . Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity. 2013; 39(2): 259-271.
[38]
Li Y., Lu Y., Wang S., Han Z., Zhu F., Ni Y., . USP21 prevents the generation of T-helper-1-like Treg cells. Nat Commun. 2016; 7: 13559.
[39]
Li B., Samanta A., Song X., Iacono K.T., Bembas K., Tao R., . FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA. 2007; 104(11): 4571-4576.
[40]
Liu Y., Wang L., Predina J., Han R., Beier U.H., Wang L.C., . Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat Med. 2013; 19(9): 1173-1177.
[41]
van Loosdregt J., Brunen D., Fleskens V., Pals C.E., Lam E.W., Coffer P.J.. Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One. 2011; 6(4): e19047.
[42]
Kim H.P., Leonard W.J.. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. 2007; 204(7): 1543-1551.
[43]
Read S., Malmström V., Powrie F.. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med. 2000; 192(2): 295-302.
[44]
Collison L.W., Workman C.J., Kuo T.T., Boyd K., Wang Y., Vignali K.M., . The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007; 450(7169): 566-569.
[45]
Asseman C., Mauze S., Leach M.W., Coffman R.L., Powrie F.. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999; 190(7): 995-1004.
[46]
Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., . Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol. 1998; 10(12): 1969-1980.
[47]
Wang Y., Mao Y., Zhang J., Shi G., Cheng L., Lin Y., . IL-35 recombinant protein reverses inflammatory bowel disease and psoriasis through regulation of inflammatory cytokines and immune cells. J Cell Mol Med. 2018; 22(2): 1014-1025.
[48]
Turnis M.E., Sawant D.V., Szymczak-Workman A.L., Andrews L.P., Delgoffe G.M., Yano H., . Interleukin-35 limits anti-tumor immunity. Immunity. 2016; 44(2): 316-329.
[49]
Kurschus F.C., Kleinschmidt M., Fellows E., . Killing of target cells by redirected granzyme B in the absence of perforin. FEBS Lett. 2004; 562(1–3): 87-92.
[50]
Gondek D.C., Lu L.F., Quezada S.A., Sakaguchi S., Noelle R.J.. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005; 174(4): 1783-1786.
[51]
Harding F.A., McArthur J.G., Gross J.A., Raulet D.H., Allison J.P.. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992; 356(6370): 607-609.
[52]
Krummel M.F., Allison J.P.. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995; 182(2): 459-465.
[53]
Magistrelli G., Jeannin P., Herbault N., Benoit De Coignac A., Gauchat J.F., Bonnefoy J.Y., . A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol. 1999; 29(11): 3596-3602.
[54]
Stephens G.L., McHugh R.S., Whitters M.J., Young D.A., Luxenberg D., Carreno B.M., . Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol. 2004; 173(8): 5008-5020.
[55]
Garín M.I., Chu C.C., Golshayan D., Cernuda-Morollón E., Wait R., Lechler R.I.. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood. 2007; 109(5): 2058-2065.
[56]
Borsellino G., Kleinewietfeld M., Di Mitri D., Sternjak A., Diamantini A., Giometto R., . Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007; 110(4): 1225-1232.
[57]
Kobie J.J., Shah P.R., Yang L., Rebhahn J.A., Fowell D.J., Mosmann T.R.. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol. 2006; 177(10): 6780-6786.
[58]
Pandiyan P., Zheng L., Ishihara S., Reed J., Lenardo M.J.. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007; 8(12): 1353-1362.
[59]
Liang B., Workman C., Lee J., Chew C., Dale B.M., Colonna L., . Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008; 180(9): 5916-5926.
[60]
Yu X., Harden K., Gonzalez L.C., Francesco M., Chiang E., Irving B., . The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009; 10(1): 48-57.
[61]
Sarris M., Andersen K.G., Randow F., Mayr L., Betz A.G.. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity. 2008; 28(3): 402-413.
[62]
Fallarino F., Grohmann U., Hwang K.W., Orabona C., Vacca C., Bianchi R., . Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003; 4(12): 1206-1212.
[63]
Maj T., Wang W., Crespo J., Zhang H., Wang W., Wei S., . Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 2017; 18(12): 1332-1341.
[64]
Powrie F., Leach M.W., Mauze S., Caddle L.B., Coffman R.L.. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993; 5(11): 1461-1471.
[65]
Bennett C.L., Christie J., Ramsdell F., Brunkow M.E., Ferguson P.J., Whitesell L., . The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001; 27(1): 20-21.
[66]
Brunkow M.E., Jeffery E.W., Hjerrild K.A., Paeper B., Clark L.B., Yasayko S.A., . Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001; 27(1): 68-73.
[67]
Zou W.. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006; 6: 295-307.
[68]
Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., . Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009; 30(6): 899-911.
[69]
Saito T., Nishikawa H., Wada H., Nagano Y., Sugiyama D., Atarashi K., . Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med. 2016; 22(6): 679-684.
[70]
Crusz S.M., Balkwill F.R.. Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol. 2015; 12(10): 584-596.
[71]
Erdman S.E., Poutahidis T.. Cancer inflammation and regulatory T cells. Int J Cancer. 2010; 127(4): 768-779.
[72]
Cipolletta D., Feuerer M., Li A., Kamei N., Lee J., Shoelson S.E., . PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012; 486(7404): 549-553.
[73]
Kolodin D., van Panhuys N., Li C., Magnuson A.M., Cipolletta D., Miller C.M., . Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 2015; 21(4): 543-557.
[74]
Burzyn D., Kuswanto W., Kolodin D., Shadrach J.L., Cerletti M., Jang Y., . A special population of regulatory T cells potentiates muscle repair. Cell. 2013; 155(6): 1282-1295.
[75]
Arpaia N., Green J.A., Moltedo B., Arvey A., Hemmers S., Yuan S., . A distinct function of regulatory T cells in tissue protection. Cell. 2015; 162(5): 1078-1089.
[76]
Ali N., Zirak B., Rodriguez R.S., Pauli M.L., Truong H.A., Lai K., . Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell. 2017; 169(6): 1119–29.e11
[77]
Warburg O.. On respiratory impairment in cancer cells. Science. 1956; 124(3215): 269-270.
[78]
Pearce E.L., Pearce E.J.. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013; 38(4): 633-643.
[79]
Locasale J.W.. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013; 13(8): 572-583.
[80]
Chang C.H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D., . Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015; 162(6): 1229-1241.
[81]
Gobert M., Treilleux I., Bendriss-Vermare N., Bachelot T., Goddard-Leon S., Arfi V., . Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009; 69(5): 2000-2009.
[82]
Wei S., Kryczek I., Edwards R.P., Zou L., Szeliga W., Banerjee M., . Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res. 2007; 67(15): 7487-7494.
[83]
Plitas G., Konopacki C., Wu K., Bos P.D., Morrow M., Putintseva E.V., . Regulatory T cells exhibit distinct features in human breast cancer. Immunity. 2016; 45(5): 1122-1134.
[84]
Villarreal D.O., L’Huillier A., Armington S., Mottershead C., Filippova E.V., Coder B.D., . Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer. Cancer Res. 2018; 78(18): 5340-5348.
[85]
De Simone M., Arrigoni A., Rossetti G., Gruarin P., Ranzani V., Politano C., . Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity. 2016; 45(5): 1135-1147.
[86]
Zheng C., Zheng L., Yoo J.K., Guo H., Zhang Y., Guo X., . Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017; 169(7): 1342–56.e16.
[87]
Liakou C.I., Kamat A., Tang D.N., Chen H., Sun J., Troncoso P., . CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA. 2008; 105(39): 14987-14992.
[88]
Hodi F.S., Butler M., Oble D.A., Seiden M.V., Haluska F.G., Kruse A., . Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA. 2008; 105(8): 3005-3010.
[89]
Peggs K.S., Quezada S.A., Chambers C.A., Korman A.J., Allison J.P.. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009; 206(8): 1717-1725.
[90]
Park H.J., Park J.S., Jeong Y.H., Son J., Ban Y.H., Lee B.H., . PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells. J Immunol. 2015; 194(12): 5801-5811.
[91]
Shimizu J., Yamazaki S., Takahashi T., Ishida Y., Sakaguchi S.. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002; 3(2): 135-142.
[92]
Bulliard Y., Jolicoeur R., Windman M., Rue S.M., Ettenberg S., Knee D.A., . Activating Fcγ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med. 2013; 210(9): 1685-1693.
[93]
Curti B.D., Kovacsovics-Bankowski M., Morris N., Walker E., Chisholm L., Floyd K., . OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013; 73(24): 7189-7198.
[94]
Bulliard Y., Jolicoeur R., Zhang J., Dranoff G., Wilson N.S., Brogdon J.L.. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol. 2014; 92(6): 475-480.
[95]
Ko K., Yamazaki S., Nakamura K., Nishioka T., Hirota K., Yamaguchi T., . Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J Exp Med. 2005; 202(7): 885-891.
[96]
Gopal A.K., Kahl B.S., de Vos S., Wagner-Johnston N.D., Schuster S.J., Jurczak W.J., . PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014; 370(11): 1008-1018.
[97]
Ali K., Soond D.R., Pineiro R., Hagemann T., Pearce W., Lim E.L., . Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature. 2014; 510(7505): 407-411.
[98]
Levin A.M., Bates D.L., Ring A.M., Krieg C., Lin J.T., Su L., . Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature. 2012; 484(7395): 529-533.
[99]
Klapper J.A., Downey S.G., Smith F.O., Yang J.C., Hughes M.S., Kammula U.S., . High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer. 2008; 113(2): 293-301.
[100]
Jacobs J.F., Punt C.J., Lesterhuis W.J., Sutmuller R.P., Brouwer H.M., Scharenborg N.M., . Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res. 2010; 16(20): 5067-5078.
[101]
Rech A.J., Mick R., Martin S., Recio A., Aqui N.A., Powell D.J.Jr, . CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med. 2012; 4(134): 134ra62.
[102]
Onizuka S., Tawara I., Shimizu J., Sakaguchi S., Fujita T., Nakayama E.. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 1999; 59(13): 3128-3133.
[103]
Ghiringhelli F., Larmonier N., Schmitt E., Parcellier A., Cathelin D., Garrido C., . CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004; 34(2): 336-344.
[104]
Motoyoshi Y., Kaminoda K., Saitoh O., Hamasaki K., Nakao K., Ishii N., . Different mechanisms for anti-tumor effects of low- and high-dose cyclophosphamide. Oncol Rep. 2006; 16(1): 141-146.
[105]
Ge Y., Domschke C., Stoiber N., Schott S., Heil J., Rom J., . Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol Immunother. 2012; 61(3): 353-362.
[106]
Sugiyama D., Nishikawa H., Maeda Y., Nishioka M., Tanemura A., Katayama I., . Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci USA. 2013; 110(44): 17945-17950.
[107]
Yi G., Guo S., Liu W., Wang H., Liu R., Tsun A., . Identification and functional analysis of heterogeneous FOXP3+ Treg cell subpopulations in human pancreatic ductal adenocarcinoma. Sci Bull. 2018; 63(15): 792-981.
[108]
Takeuchi Y., Nishikawa H.. Roles of regulatory T cells in cancer immunity. Int Immunol. 2016; 28(8): 401-409.
[109]
Maeda Y., Nishikawa H., Sugiyama D., Ha D., Hamaguchi M., Saito T., . Detection of self-reactive CD8+ T cells with an anergic phenotype in healthy individuals. Science. 2014; 346(6216): 1536-1540.

版权

2019 Chinese Academy of Engineering
PDF(1072 KB)

Accesses

Citation

Detail

段落导航
相关文章

/