对良好中药标准的深层化学认知

工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 83-97.

PDF(1948 KB)
PDF(1948 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (1) : 83-97. DOI: 10.1016/j.eng.2018.12.005
研究论文
Research Traditional Chinese Medicine—Review

对良好中药标准的深层化学认知

作者信息 +

Deeper Chemical Perceptions for Better Traditional Chinese Medicine Standards

Author information +
History +

Abstract

Traditional Chinese medicines (TCMs), a complex system of natural resources with many diverse components, are widely used as approved medicinal agents in China. Quality control of TCMs is a huge challenge for the government and for testing institutes and is associated with numerous scientific issues. Among these considerations include the following questions: How many components are in TCMs? How can the multiple components in TCMs be comprehensively delineated and subsequently characterized? What is the level and range of these (active) metabolites within these multiple-component TCMs, in order to recommend standards? and What are the qualities required for a marker constituent to be selected, and from a practical perspective, how can these components be assessed with low cost and in a short time? All of these factors require significant and deep thinking in order to understand the individualistic chemistry of TCM in order to develop enhanced TCM quality standards for improved and consistent patient care. In this review, the latest exploratory research in TCM chemistry analytical techniques and methods is summarized in order to begin to develop responses to these scientific issues. Advances in these methods have included multidimensional separation for liquid chromatography–high-resolution mass spectrometry (LC–HRMS), smart triggering data-dependent acquisition of LC–HRMS, target analysis with liquid chromatography–mass spectrometry (LC–MS), supercritical fluid chromatography, and data mining of large mass spectrometry (MS) datasets. In addition, two quality strategies have been introduced in order to save reference standards and the analysis time for a TCM quality standard, including the application of the single standard to determine multi-components (SSDMC) and monomethod-heterotrait matrix methods. Finally, a series of future improvements for analytical methods for TCMs are proposed.

Keywords

Traditional Chinese medicine / Liquid chromatography / Mass spectrometry / Data-dependent acquisition / Chemometrics / Untargeted / Data mining / Quality control

引用本文

导出引用
. . Engineering. 2019, 5(1): 83-97 https://doi.org/10.1016/j.eng.2018.12.005

参考文献

[1]
Guo D.A.. Quality marker concept inspires the quality research of traditional Chinese medicines. Chin Herb Med. 2017; 9(1): 1-2.
[2]
Hou J., Feng R., Zhang Y., Pan H., Yao S., Han S., . Characteristic chromatogram: a method of discriminate and quantitative analysis for quality evaluation of Uncaria stem with hooks. Planta Med. 2018; 84(6–7): 449-456.
[3]
Chinese Pharmacopoeia Commission, editor. Pharmacopoeia of People’s Republic of China, vol. I. 10th ed. Beijing: China Medical Science Press; 2015.
[4]
Guo D.A., Wu W.Y., Ye M., Liu X., Cordell G.A.. A holistic approach to the quality control of traditional Chinese medicines. Science. 2015; 347(6219): S29-S31.
[5]
King T.J., Read G.. Tanshinones. Part I. The synthesis of an isomer of tanshinone-I. J Chem Soc. 1961; Dec:5090
[6]
Ai C.B., Li L.N.. Stereostructure of salvianolic acid B and isolation of salvianolic acid C from Salvia miltiorrhiza. J Nat Prod. 1988; 51(1): 145-149.
[7]
Hou J.J., Wu W.Y., Da J., Yao S., Long H.L., Yang Z., . Ruggedness and robustness of conversion factors in method of simultaneous determination of multi-components with single reference standard. J Chromatogr A. 2011; 1218(33): 5618-5627.
[8]
United States Pharmacopeial Convention.
[9]
Liu C., Guo D.A., Liu L.. Quality transitivity and traceability system of herbal medicine products based on quality markers. Phytomedicine. 2018; 44: 247-257.
[10]
Yang M., Sun J., Lu Z., Chen G., Guan S., Liu X., . Phytochemical analysis of traditional Chinese medicine using liquid chromatography coupled with mass spectrometry. J Chromatogr A. 2009; 1216(11): 2045-2062.
[11]
Olivon F., Apel C., Retailleau P., Allard P.M., Wolfender J.L., Touboul D., . Searching for original natural products by molecular networking: detection, isolation and total synthesis of chloroaustralasines. Org Chem Front. 2018; 5(14): 2171-2178.
[12]
Yao C.L., Yang W.Z., Wu W.Y., Da J., Hou J.J., Zhang J.X., . Simultaneous quantitation of five Panax notoginseng saponins by multi heart-cutting two-dimensional liquid chromatography: method development and application to the quality control of eight notoginseng containing Chinese patent medicines. J Chromatogr A. 2015; 1402: 71-81.
[13]
Zhang A.H., Sun H., Yan G.L., Wang X.. Recent developments and emerging trends of mass spectrometry for herbal ingredients analysis. Trends Analyt Chem. 2017; 94: 70-76.
[14]
He X.R., Li C.G., Zhu X.S., Li Y.Q., Jarouche M., Bensoussan A., . High-performance liquid chromatography coupled with tandem mass spectrometry technology in the analysis of Chinese Medicine Formulas: a bibliometric analysis (1997–2015). J Sep Sci. 2017; 40(1): 81-92.
[15]
Yao C.L., Pan H.Q., Wang H., Yao S., Yang W.Z., Hou J.J., . Global profiling combined with predicted metabolites screening for discovery of natural compounds: characterization of ginsenosides in the leaves of Panax notoginseng as a case study. J Chromatogr A. 2018; 1538: 34-44.
[16]
Wu H., Guo J., Chen S., Liu X., Zhou Y., Zhang X., . Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography–mass spectrometry. J Pharm Biomed Anal. 2013; 72: 267-291.
[17]
Song Q., Zhang A., Yan G., Liu L., Wang X.. Technological advances in current metabolomics and its application in tradition Chinese medicine. RSC Adv. 2017; 7(84): 53516-53524.
[18]
Shi Y.H., Zhu S., Ge Y.W., Toume K., Wang Z., Batkhuu J., . Characterization and quantification of monoterpenoids in different types of peony root and the related Paeonia species by liquid chromatography coupled with ion trap and time-of-flight mass spectrometry. J Pharm Biomed Anal. 2016; 129: 581-592.
[19]
Ji S., He D.D., Wang T.Y., Han J., Li Z., Du Y., . Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction × reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry. J Pharm Biomed Anal. 2017; 146: 68-78.
[20]
Malerod H., Lundanes E., Greibrokk T.. Recent advances in on-line multidimensional liquid chromatography. Anal Methods. 2010; 2(2): 110-122.
[21]
Cao J.L., Wei J.C., Chen M.W., Su H.X., Wan J.B., Wang Y.T., . Application of two-dimensional chromatography in the analysis of Chinese herbal medicines. J Chromatogr A. 2014; 1371: 1-14.
[22]
Yao C.L., Yang W.Z., Si W., Shen Y., Zhang N.X., Chen H.L., . An enhanced targeted identification strategy for the selective identification of flavonoid O-glycosides from Carthamus tinctorius by integrating offline two-dimensional liquid chromatography/linear ion-trap–Orbitrap mass spectrometry, high-resolution diagnostic product ions/neutral loss filtering and liquid chromatography–solid phase extraction–nuclear magnetic resonance. J Chromatogr A. 2017; 1491: 87-97.
[23]
Zhang Y., Jin H., Li X., Zhao J., Guo X., Wang J., . Separation and characterization of bufadienolides in toad skin using two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography coupled with mass spectrometry. J Chromatogr B. 2016; 1026: 67-74.
[24]
Li X., Liu Y., Shen A., Wang C., Yan J., Zhao W., . Efficient purification of active bufadienolides by a class separation method based on hydrophilic solid-phase extraction and reversed-phase high performance liquid chromatography. J Pharm Biomed Anal. 2014; 97: 54-64.
[25]
Li X., Guo Z., Wang C., Shen A., Liu Y., Zhang X., . Purification of bufadienolides from the skin of Bufo bufo gargarizans Cantor with positively charged C18 column. J Pharm Biomed Anal. 2014; 92: 105-113.
[26]
Jin H., Liu Y., Guo Z., Wang J., Zhang X., Wang C., . Recent development in liquid chromatography stationary phases for separation of traditional Chinese medicine components. J Pharm Biomed Anal. 2016; 130: 336-346.
[27]
Qiu S., Yang W.Z., Shi X.J., Yao C.L., Yang M., Liu X., . A green protocol for efficient discovery of novel natural compounds: characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study. Anal Chim Acta. 2015; 893: 65-76.
[28]
Yang W., Zhang J., Yao C., Qiu S., Chen M., Pan H., . Method development and application of offline two-dimensional liquid chromatography/quadrupole time-of-flight mass spectrometry-fast data directed analysis for comprehensive characterization of the saponins from Xueshuantong injection. J Pharm Biomed Anal. 2016; 128: 322-332.
[29]
Yang W., Si W., Zhang J., Yang M., Pan H., Wu J., . Selective and comprehensive characterization of the quinochalcone C-glycoside homologs in Carthamus tinctorius L. by offline comprehensive two-dimensional liquid chromatography/LTQ–Orbitrap MS coupled with versatile data mining strategies. RSC Adv. 2016; 6(1): 495-506.
[30]
Sun W., Tong L., Miao J., Huang J., Li D., Li Y., . Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography × reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry. J Chromatogr A. 2016; 1431: 79-88.
[31]
Yang W.Z., Hu Y., Wu W.Y., Ye M., Guo D.A.. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry. 2014; 106: 7-24.
[32]
Pan H., Yao C., Yang W., Yao S., Huang Y., Zhang Y., . An enhanced strategy integrating offline two-dimensional separation and step-wise precursor ion list-based raster-mass defect filter: characterization of indole alkaloids in five botanical origins of Uncariae Ramulus Cum Unicis as an exemplary application. J Chromatogr A. 2018; 1563: 124-134.
[33]
Muhammad S., Han S., Xie X., Wang S., Aziz M.M.. Overview of online two-dimensional liquid chromatography based on cell membrane chromatography for screening target components from traditional Chinese medicines. J Sep Sci. 2017; 40(1): 299-313.
[34]
Yue Y., Dou L., Wang X., Xue H., Song Y., Li X.. Screening β1AR inhibitors by cell membrane chromatography and offline UPLC/MS method for protecting myocardial ischemia. J Pharm Biomed Anal. 2015; 115: 339-344.
[35]
Cao J.L., Wang S.S., Hu H., He C.W., Wan J.B., Su H.X., . Online comprehensive two-dimensional hydrophilic interaction chromatography × reversed-phase liquid chromatography coupled with hybrid linear ion trap Orbitrap mass spectrometry for the analysis of phenolic acids in Salvia miltiorrhiza. J Chromatogr A. 2018; 1536: 216-227.
[36]
Zhou W., Guo Z., Yu L., Zhou H., Shen A., Jin Y., . On-line comprehensive two-dimensional liquid chromatography tandem mass spectrometry for the analysis of Curcuma kwangsiensis. Talanta. 2018; 186: 73-79.
[37]
Li D., Dück R., Schmitz O.J.. The advantage of mixed-mode separation in the first dimension of comprehensive two-dimensional liquid-chromatography. J Chromatogr A. 2014; 1358: 128-135.
[38]
Jia D., Chen X., Cao Y., Wu X., Ding X., Zhang H., . On-line comprehensive two-dimensional HepG2 cell membrane chromatographic analysis system for charactering anti-hepatoma components from rat serum after oral administration of Radix scutellariae: a strategy for rapid screening active compounds in vivo. J Pharm Biomed Anal. 2016; 118: 27-33.
[39]
Chen X., Cao Y., Zhang H., Zhu Z., Liu M., Liu H., . Comparative normal/failing rat myocardium cell membrane chromatographic analysis system for screening specific components that counteract doxorubicin-induced heart failure from Acontium carmichaeli. Anal Chem. 2014; 86(10): 4748-4757.
[40]
Montero L., Ibáñez E., Russo M., di Sanzo R., Rastrelli L., Piccinelli A.L., . Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection. Anal Chim Acta. 2016; 913: 145-159.
[41]
Qiao X., Song W., Ji S., Wang Q., Guo D.A., Ye M.. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase × reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. J Chromatogr A. 2015; 1402: 36-45.
[42]
Wang S., Wang Q., Qiao X., Song W., Zhong L., Guo D.A., . Separation and characterization of triterpenoid saponins in Gleditsia sinensis by comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. Planta Med. 2016; 82(18): 1558-1567.
[43]
Qiao X., Wang Q., Song W., Qian Y., Xiao Y., An R., . A chemical profiling solution for Chinese medicine formulas using comprehensive and loop-based multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2016; 1438: 198-204.
[44]
Sheng N., Zheng H., Xiao Y., Wang Z., Li M., Zhang J.. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr A. 2017; 1517: 97-107.
[45]
Qiao X., Song W., Ji S., Li Y.J., Wang Y., Li R., . Separation and detection of minor constituents in herbal medicines using a combination of heart-cutting and comprehensive two-dimensional liquid chromatography. J Chromatogr A. 2014; 1362: 157-167.
[46]
May J.C., McLean J.A.. Ion mobility–mass spectrometry: time-dispersive instrumentation. Anal Chem. 2015; 87(3): 1422-1436.
[47]
Mairinger T., Causon T.J., Hann S.. The potential of ion mobility–mass spectrometry for non-targeted metabolomics. Curr Opin Chem Biol. 2018; 42: 9-15.
[48]
Zhou Z., Tu J., Zhu Z.J.. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr Opin Chem Biol. 2018; 42: 34-41.
[49]
Zhou Z., Tu J., Xiong X., Shen X., Zhu Z.J.. LipidCCS: prediction of collision cross-section values for lipids with high precision to support ion mobility–mass spectrometry-based lipidomics. Anal Chem. 2017; 89(17): 9559-9566.
[50]
Wang L., Liu S., Zhang X., Xing J., Liu Z., Song F.. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography–tandem mass spectrometry combined with ion-mobility spectrometry. J Chromatogr A. 2016; 1452: 47-57.
[51]
Rosting C., Yu J., Cooper H.J.. High field asymmetric waveform ion mobility spectrometry in nontargeted bottom-up proteomics of dried blood spots. J Proteome Res. 2018; 17(6): 1997-2004.
[52]
Tose L.V., Santos N.A., Rodrigues R.R.T., Murgu M., Gomes A.F., Vasconcelos G.A., . Isomeric separation of cannabinoids by UPLC combined with ionic mobility mass spectrometry (TWIM-MS)—Part I. Int J Mass Spectrom. 2017; 418: 112-121.
[53]
Pacini T., Fu W., Gudmundsson S., Chiaravalle A.E., Brynjolfson S., Palsson B.O., . Multidimensional analytical approach based on UHPLC-UV-ion mobility-MS for the screening of natural pigments. Anal Chem. 2015; 87(5): 2593-2599.
[54]
Willems J.L., Khamis M.M., Mohammed Saeid W., Purves R.W., Katselis G., Low N.H., . Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal Chim Acta. 2016; 933: 164-174.
[55]
Zhang H., Zheng D., Li H.H., Wang H., Tan H.S., Xu H.X.. Diagnostic filtering to screen polycyclic polyprenylated acylphloroglucinols from Garcinia oblongifolia by ultrahigh performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. Anal Chim Acta. 2016; 912: 85-96.
[56]
Stephan S., Jakob C., Hippler J., Schmitz O.J.. A novel four-dimensional analytical approach for analysis of complex samples. Anal Bioanal Chem. 2016; 408(14): 3751-3759.
[57]
Stephan S., Hippler J., Köhler T., Brecht D., Schmitz O.J.. A powerful four-dimensional separation method for complex samples. J Anal Test. 2017; 1: 1.
[58]
Ma S., Chowdhury S.K.. Data acquisition and data mining techniques for metabolite identification using LC coupled to high-resolution MS. Bioanalysis. 2013; 5(10): 1285-1297.
[59]
Dhurjad P.S., Marothu V.K., Rathod R.. Post-acquisition data mining techniques for LC–MS/MS-acquired data in drug metabolite identification. Bioanalysis. 2017; 9(16): 1265-1278.
[60]
Cai T., Guo Z.Q., Xu X.Y., Wu Z.J.. Recent (2000–2015) developments in the analysis of minor unknown natural products based on characteristic fragment information using LC–MS. Mass Spectrom Rev. 2018; 37(2): 202-216.
[61]
de Villiers A., Venter P., Pasch H.. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J Chromatogr A. 2016; 1430: 16-78.
[62]
Shi X.J., Yang W.Z., Qiu S., Yao C.L., Shen Y., Pan H.Q., . An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. quinquefolius, and P. notoginseng. Anal Chim Acta. 2017; 952: 59-70.
[63]
Bi Q.R., Hou J.J., Yang M., Shen Y., Qi P., Feng R.H., . A strategy combining higher energy C-trap dissociation with neutral loss- and product ion-based MSn acquisition for global profiling and structure annotation of fatty acids conjugates. J Am Soc Mass Spectrom. 2017; 28(3): 443-451.
[64]
Shi X., Yang W., Huang Y., Hou J., Qiu S., Yao C., . Direct screening of malonylginsenosides from nine ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap/Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography. J Chromatogr A. 2018; 1571: 213-222.
[65]
Xie T., Liang Y., Hao H., AJ, Xie L., Gong P., . Rapid identification of ophiopogonins and ophiopogonones in Ophiopogon japonicus extract with a practical technique of mass defect filtering based on high resolution mass spectrometry. J Chromatogr A. 2012; 1227: 234-244.
[66]
Yan G., Sun H., Sun W., Zhao L., Meng X., Wang X.. Rapid and global detection and characterization of aconitum alkaloids in Yin Chen Si Ni Tang, a traditional Chinese medical formula, by ultra performance liquid chromatography–high resolution mass spectrometry and automated data analysis. J Pharm Biomed Anal. 2010; 53(3): 421-431.
[67]
Pan H., Yang W., Zhang Y., Yang M., Feng R., Wu W., . An integrated strategy for the systematic characterization and discovery of new indole alkaloids from Uncaria rhynchophylla by UHPLC/DAD/LTQ–Orbitrap-MS. Anal Bioanal Chem. 2015; 407(20): 6057-6070.
[68]
Lai C.J.S., Tan T., Zeng S.L., Qi L.W., Liu X.G., Dong X., . An integrated high resolution mass spectrometric data acquisition method for rapid screening of saponins in Panax notoginseng (Sanqi). J Pharm Biomed Anal. 2015; 109: 184-191.
[69]
Pan H., Yang W., Yao C., Shen Y., Zhang Y., Shi X., . Mass defect filtering-oriented classification and precursor ions list-triggered high-resolution mass spectrometry analysis for the discovery of indole alkaloids from Uncaria sinensis. J Chromatogr A. 2017; 1516: 102-113.
[70]
Yang M., Zhou Z., Guo D.A.. A strategy for fast screening and identification of sulfur derivatives in medicinal Pueraria species based on the fine isotopic pattern filtering method using ultra-high-resolution mass spectrometry. Anal Chim Acta. 2015; 894: 44-53.
[71]
Yang M., Zhou Z., Yao S., Li S., Yang W., Jiang B., . Neutral loss ion mapping experiment combined with precursor mass list and dynamic exclusion for screening unstable malonyl glucoside conjugates. J Am Soc Mass Spectrom. 2016; 27(1): 99-107.
[72]
Zhang J.Y., Wang Z.J., Zhang Q., Wang F., Ma Q., Lin Z.Z., . Rapid screening and identification of target constituents using full scan-parent ions list-dynamic exclusion acquisition coupled to diagnostic product ions analysis on a hybrid LTQ–Orbitrap mass spectrometer. Talanta. 2014; 124: 111-122.
[73]
Wang F., Zhang Q., Lu Z., Wang Q., Wang M., Liu Y., . Identification of chemical constituents in traditional Chinese medicine formula using HPLC coupled with linear ion trap–Orbitrap MS from high doses of medicinal materials to equivalent doses of formula: study on Xiang-Sha-Liu-Jun-Zi-Jia-Jian granules. J Sep Sci. 2016; 39(9): 1619-1627.
[74]
Shen Y., Feng Z., Yang M., Zhou Z., Han S., Hou J., . Rapid profiling of polymeric phenolic acids in Salvia miltiorrhiza by hybrid data-dependent/targeted multistage mass spectrometry acquisition based on expected compounds prediction and fragment ion searching. J Sep Sci. 2018; 41(8): 1888-1895.
[75]
Liu W., Song Q., Yan Y., Liu Y., Li P., Wang Y., . Integrated approach for confidence-enhanced quantitative analysis of herbal medicines, Cistanche salsa as a case. J Chromatogr A. 2018; 1561: 56-66.
[76]
Song Y., Zhang N., Shi S., Li J., Zhao Y., Zhang Q., . Homolog-focused profiling of ginsenosides based on the integration of step-wise formate anion-to-deprotonated ion transition screening and scheduled multiple reaction monitoring. J Chromatogr A. 2015; 1406: 136-144.
[77]
Song W., Qiao X., Chen K., Wang Y., Ji S., Feng J., . Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Anal Chem. 2017; 89(5): 3146-3153.
[78]
Song Y.L., Jing W.H., Du G., Yang F.Q., Yan R., Wang Y.T.. Qualitative analysis and enantiospecific determination of angular-type pyranocoumarins in Peucedani Radix using achiral and chiral liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A. 2014; 1338: 24-37.
[79]
Huo H., Liu Y., Liu W., Sun J., Zhang Q., Zhao Y., . A full solution for multi-component quantification-oriented quality assessment of herbal medicines, Chinese agarwood as a case. J Chromatogr A. 2018; 1558: 37-49.
[80]
Liang J., Wu W.Y., Sun G.X., Wang D.D., Hou J.J., Yang W.Z., . A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example. J Chromatogr A. 2013; 1294: 58-69.
[81]
Ye H., Zhu L., Wang L., Liu H., Zhang J., Wu M., . Stepped MSAll Relied Transition (SMART): an approach to rapidly determine optimal multiple reaction monitoring mass spectrometry parameters for small molecules. Anal Chim Acta. 2016; 907: 60-68.
[82]
Li Z., Xiao S., Ai N., Luo K., Fan X., Cheng Y.. Derivative multiple reaction monitoring and single herb calibration approach for multiple components quantification of traditional Chinese medicine analogous formulae. J Chromatogr A. 2015; 1376: 126-142.
[83]
Li F., Cheng T.F., Dong X., Li P., Yang H.. Global analysis of chemical constituents in Shengmai injection using high performance liquid chromatography coupled with tandem mass spectrometry. J Pharm Biomed Anal. 2016; 117: 61-72.
[84]
Si W., Yang W., Guo D.A., Wu J., Zhang J., Qiu S., . Selective ion monitoring of quinochalcone C-glycoside markers for the simultaneous identification of Carthamus tinctorius L. in eleven Chinese patent medicines by UHPLC/QTOF MS. J Pharm Biomed Anal. 2016; 117: 510-521.
[85]
Yang W., Zhang Y., Wu W., Huang L., Guo D.A., Liu C.. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm Sin B. 2017; 7(4): 439-446.
[86]
Yao C., Yang W., Si W., Pan H., Qiu S., Wu J., . A strategy for establishment of practical identification methods for Chinese patent medicine from systematic multi-component characterization to selective ion monitoring of chemical markers: Shuxiong tablet as a case study. RSC Adv. 2016; 6(69): 65055-65066.
[87]
Huang Y., Tang G., Zhang T., Fillet M., Crommen J., Jiang Z.. Supercritical fluid chromatography in traditional Chinese medicine analysis. J Pharm Biomed Anal. 2018; 147: 65-80.
[88]
Lísa M., Holčapek M.. High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography–mass spectrometry. Anal Chem. 2015; 87(14): 7187-7195.
[89]
Shi X., Yang W., Qiu S., Hou J., Wu W., Guo D.A.. Systematic profiling and comparison of the lipidomes from Panax ginseng, P. quinquefolius, and P. notoginseng by ultrahigh performance supercritical fluid chromatography/high-resolution mass spectrometry and ion mobility-derived collision cross section measurement. J Chromatogr A. 2018; 1548: 64-75.
[90]
Hou J.J., Cao C.M., Xu Y.W., Yao S., Cai L.Y., Long H.L., . Exploring lipid markers of the quality of coix seeds with different geographical origins using supercritical fluid chromatography mass spectrometry and chemometrics. Phytomedicine. 2018; 45: 1-7.
[91]
Yang J., Zhu L., Zhao Y., Xu Y., Sun Q., Liu S., . Separation of furostanol saponins by supercritical fluid chromatography. J Pharm Biomed Anal. 2017; 145: 71-78.
[92]
Zhu L.L., Zhao Y., Xu Y.W., Sun Q.L., Sun X.G., Kang L.P., . Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins. J Pharm Biomed Anal. 2016; 120: 72-78.
[93]
Jiang H., Yang L., Xing X., Yan M., Guo X., Yang B., . Development of an analytical method for separation of phenolic acids by ultra-performance convergence chromatography (UPC2) using a column packed with a sub-2-μm particle. J Pharm Biomed Anal. 2018; 153: 117-125.
[94]
Huang Y., Feng Y., Tang G., Li M., Zhang T., Fillet M., . Development and validation of a fast SFC method for the analysis of flavonoids in plant extracts. J Pharm Biomed Anal. 2017; 140: 384-391.
[95]
Qiao X., An R., Huang Y., Ji S., Li L., Tzeng Y.M., . Separation of 25R/S-ergostane triterpenoids in the medicinal mushroom Antrodia camphorata using analytical supercritical-fluid chromatography. J Chromatogr A. 2014; 1358: 252-260.
[96]
Huang Y., Zhang T., Zhou H., Feng Y., Fan C., Chen W., . Fast separation of triterpenoid saponins using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal. 2016; 121: 22-29.
[97]
Grand-Guillaume Perrenoud A., Guillarme D., Boccard J., Veuthey J.L., Barron D., Moco S.. Ultra-high performance supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry as a performing tool for bioactive analysis. J Chromatogr A. 2016; 1450: 101-111.
[98]
Yang W., Zhang Y., Pan H., Yao C., Hou J., Yao S., . Supercritical fluid chromatography for separation and preparation of tautomeric 7-epimeric spiro oxindole alkaloids from Uncaria macrophylla. J Pharm Biomed Anal. 2017; 134: 352-360.
[99]
Yang B., Xin H., Wang F., Cai J., Liu Y., Fu Q., . Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography. J Sep Sci. 2017; 40(16): 3231-3238.
[100]
Sherrod S.D., McLean J.A.. Systems-wide high-dimensional data acquisition and informatics using structural mass spectrometry strategies. Clin Chem. 2016; 62(1): 77-83.
[101]
Qiu F., Fine D.D., Wherritt D.J., Lei Z., Sumner L.W.. PlantMAT: a metabolomics tool for predicting the specialized metabolic potential of a system and for large-scale metabolite identifications. Anal Chem. 2016; 88(23): 11373-11383.
[102]
Ren D., Ran L., Yang C., Xu M., Yi L.. Integrated strategy for identifying minor components in complex samples combining mass defect, diagnostic ions and neutral loss information based on ultra-performance liquid chromatography-high resolution mass spectrometry platform: Folium Artemisiae Argyi as a case study. J Chromatogr A. 2018; 1550: 35-44.
[103]
Qiao X., Li R., Song W., Miao W.J., Liu J., Chen H.B., . A targeted strategy to analyze untargeted mass spectral data: rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J Chromatogr A. 2016; 1441: 83-95.
[104]
Guo L.X., Li R., Liu K., Yang J., Li H.J., Li S.L., . Structural characterization and discrimination of Chinese medicinal materials with multiple botanical origins based on metabolite profiling and chemometrics analysis: Clematidis Radix et Rhizoma as a case study. J Chromatogr A. 2015; 1425: 129-140.
[105]
Liao M., Li A., Chen C., Ouyang H., Zhang Y., Xu Y., . Systematic identification of shikonins and shikonofurans in medicinal Zicao species using ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry combined with a data mining strategy. J Chromatogr A. 2015; 1425: 158-172.
[106]
He M., Jia J., Li J., Wu B., Huang W., Liu M., . Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv. J Chromatogr A. 2018; 1554: 81-91.
[107]
Zheng W., Wang F., Zhao Y., Sun X., Kang L., Fan Z., . Rapid characterization of constituents in Tribulus terrestris from different habitats by UHPLC/Q-TOF MS. J Am Soc Mass Spectrom. 2017; 28(11): 2302-2318.
[108]
Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., . Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016; 34(8): 828-837.
[109]
Cheng T., Jin H., Liu C., Zhang W.. LC-MS/MS-based molecular networking producing enlighten study of Chinese materia medica. Chin Tradit Herb Drugs. 2018; 49(2): 265-273. Chinese
[110]
Wang C., Zhang J., Wu C., Wang Z.. A multiple-dimension liquid chromatography coupled with mass spectrometry data strategy for the rapid discovery and identification of unknown compounds from a Chinese herbal formula (Er-xian decoction). J Chromatogr A. 2017; 1518: 59-69.
[111]
Hou J.J., Guo J.L., Cao C.M., Yao S., Long H.L., Cai L.Y., . Green quantification strategy combined with chemometric analysis for triglycerides in seeds used in traditional Chinese medicine. Planta Med. 2018; 84(6–7): 457-464.
[112]
Zhang Y.B., Da J., Zhang J.X., Li S.R., Chen X., Long H.L., . A feasible, economical, and accurate analytical method for simultaneous determination of six alkaloid markers in Aconiti Lateralis Radix Praeparata from different manufacturing sources and processing ways. Chin J Nat Med. 2017; 15(4): 301-309.
[113]
Wang F., Wang B., Wang L., Xiong Z.Y., Gao W., Li P., . Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study. J Pharm Biomed Anal. 2017; 138: 70-79.
[114]
Shen Y., Hou J., Deng W., Feng Z., Yang M., Cheng J., . Comparative analysis of ultrafine granular powder and decoction pieces of Salvia miltiorrhiza by UPLC–UV–MSn combined with statistical analysis. Planta Med. 2017; 83(6): 557-564.
[115]
Wong H.Y., Hu B., So P.K., Chan C.O., Mok D.K.W., Xin G.Z., . Rapid authentication of Gastrodiae rhizoma by direct ionization mass spectrometry. Anal Chim Acta. 2016; 938: 90-97.
[116]
Wang Q., Song W., Qiao X., Ji S., Kuang Y., Zhang Z.X., . Simultaneous quantification of 50 bioactive compounds of the traditional Chinese medicine formula Gegen-Qinlian decoction using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A. 2016; 1454: 15-25.
[117]
Xu J., Xu Q.S., Chan C.O., Mok D.K.W., Yi L.Z., Chau F.T.. Identifying bioactive components in natural products through chromatographic fingerprint. Anal Chim Acta. 2015; 870: 45-55.
[118]
Yao S., Zhang J., Wang D., Hou J., Yang W., Da J., . Discriminatory components retracing strategy for monitoring the preparation procedure of Chinese patent medicines by fingerprint and chemometric analysis. PLoS One. 2015; 10(3): e0121366.
[119]
Zhang J., Yang W., Li S., Yao S., Qi P., Yang Z., . An intelligentized strategy for endogenous small molecules characterization and quality evaluation of earthworm from two geographic origins by ultra-high performance HILIC/QTOF MSE and Progenesis QI. Anal Bioanal Chem. 2016; 408(14): 3881-3890.
[120]
Wang L., Liu L.F., Wang J.Y., Shi Z.Q., Chang W.Q., Chen M.L., . A strategy to identify and quantify closely related adulterant herbal materials by mass spectrometry-based partial least squares regression. Anal Chim Acta. 2017; 977: 28-35.
[121]
Zhang J., Li S., Yao S., Si W., Cai L., Pan H., . Ultra-performance liquid chromatography of amino acids for the quality assessment of pearl powder. J Sep Sci. 2015; 38(9): 1552-1560.
[122]
Yang W., Qiao X., Li K., Fan J., Bo T., Guo D.A., . Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm Sin B. 2016; 6(6): 568-575.
[123]
Qiu S., Yang W.Z., Yao C.L., Qiu Z.D., Shi X.J., Zhang J.X., . Nontargeted metabolomic analysis and “commercial-homophyletic” comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng. J Chromatogr A. 2016; 1453: 78-87.
[124]
Ma X.D., Fan Y.X., Jin C.C., Wang F., Xin G.Z., Li P., . Specific targeted quantification combined with non-targeted metabolite profiling for quality evaluation of Gastrodia elata tubers from different geographical origins and cultivars. J Chromatogr A. 2016; 1450: 53-63.
[125]
Zhou L., Xu J.D., Zhou S.S., Shen H., Mao Q., Kong M., . Chemomics-based marker compounds mining and mimetic processing for exploring chemical mechanisms in traditional processing of herbal medicines, a continuous study on Rehmanniae Radix. J Chromatogr A. 2017; 1530: 232-240.
[126]
Hou J.J., Wu W.Y., Liang J., Yang Z., Long H.L., Cai L.Y., . A single, multi-faceted, enhanced strategy to quantify the chromatographically diverse constituents in the roots of Euphorbia kansui. J Pharm Biomed Anal. 2014; 88: 321-330.
[127]
Yao C., Yang W., Zhang J., Qiu S., Chen M., Shi X., . UHPLC–Q-TOF-MS-based metabolomics approach to compare the saponin compositions of Xueshuantong injection and Xuesaitong injection. J Sep Sci. 2017; 40(4): 834-841.
[128]
Wang D.D., Liang J., Yang W.Z., Hou J.J., Yang M., Da J., . HPLC/qTOF-MS-oriented characteristic components data set and chemometric analysis for the holistic quality control of complex TCM preparations: Niuhuang Shangqing pill as an example. J Pharm Biomed Anal. 2014; 89: 130-141.
[129]
Li K., Li J., Su J., Xiao X., Peng X., Liu F., . Identification of quality markers of Yuanhu Zhitong tablets based on integrative pharmacology and data mining. Phytomedicine. 2018; 44: 212-219.
[130]
Qiao X., Lin X.H., Ji S., Zhang Z.X., Bo T., Guo D.A., . Global profiling and novel structure discovery using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis (MNPSS): characterization of terpene-conjugated curcuminoids in Curcuma longa as a case study. Anal Chem. 2016; 88(1): 703-710.
[131]
Yang T.W., Zhao C., Fan Y., Qi L.W., Li P.. Design of ultraviolet wavelength and standard solution concentrations in relative response factors for simultaneous determination of multi-components with single reference standard in herbal medicines. J Pharm Biomed Anal. 2015; 114: 280-287.
[132]
Wu C., Guan Q., Wang S., Rong Y.. Simultaneous determination of multiple ginsenosides in Panax ginseng herbal medicines with one single reference standard. Pharmacogn Mag. 2017; 13(49 Suppl S1): 84-89.
[133]
Liu W., Zhang J., Han W., Liu Y., Feng J., Tang C., . One single standard substance for the simultaneous determination of 17 triterpenes in Ganoderma lingzhi and its related species using high-performance liquid chromatography. J Chromatogr B. 2017; 1068–1069: 49-55.
[134]
Guo L., Duan L., Dou L.L., Liu L.L., Yang H., Liu E.H., . Quality standardization of herbal medicines using effective compounds combination as labeled constituents. J Pharm Biomed Anal. 2016; 129: 320-331.
[135]
Gao W., Wang R., Li D., Liu K., Chen J., Li H.J., . Comparison of five Lonicera flowers by simultaneous determination of multi-components with single reference standard method and principal component analysis. J Pharm Biomed Anal. 2016; 117: 345-351.
[136]
Wang W., Ma X., Guo X., Zhao M., Tu P., Jiang Y.. A series of strategies for solving the shortage of reference standards for multi-components determination of traditional Chinese medicine, Mahoniae Caulis as a case. J Chromatogr A. 2015; 1412: 100-111.
[137]
Ning Z., Liu Z., Song Z., Zhao S., Dong Y., Zeng H., . A single marker choice strategy in simultaneous characterization and quantification of multiple components by rapid resolution liquid chromatography coupled with triple quadrupole tandem mass spectrometry (RRLC-QqQ-MS). J Pharm Biomed Anal. 2016; 124: 174-188.
Acknowledgements

The authors would like to acknowledge funding support from the National Natural Science Foundation of China (81473344, 81403097, and 81530095), Special Scientific Research in the Chinese Medicine Industry of National Administration of Traditional Chinese Medicine (201307002), the National Science and Technology Major Project for Major Drug Development (2014ZX09304-307-001-007), the Study on International Standardization of Traditional Chinese Medicine (GZYYGJ2017024), and the National Standardization of Traditional Chinese Medicine Project (ZYBZH-K-LN-01).

Compliance with ethics guidelines

Jin-Jun Hou, Jian-Qing Zhang, Chang-Liang Yao, Rudolf Bauer, Ikhlas A. Khan, Wan-Ying Wu, and De-an Guo declare that they have no conflict of interest or financial conflicts to disclose.

PDF(1948 KB)

Accesses

Citation

Detail

段落导航
相关文章

/