Fog-IBDIS——基于雾计算的制造系统大数据集成方法

Junliang Wang, Peng Zheng, Youlong Lv, Jingsong Bao, Jie Zhang

工程(英文) ›› 2019, Vol. 5 ›› Issue (4) : 662-670.

PDF(1864 KB)
PDF(1864 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (4) : 662-670. DOI: 10.1016/j.eng.2018.12.013
研究论文
RESEARCH ARTICLE

Fog-IBDIS——基于雾计算的制造系统大数据集成方法

作者信息 +

Fog-IBDIS: Industrial Big Data Integration and Sharing with Fog Computing for Manufacturing Systems

Author information +
History +

摘要

在工业领域,如何在多源工业数据的协作分析中保障源数据的私密性与安全性至关重要。本文提出了一种基于雾计算的工业大数据集成与共享方法(Fog-IBDIS),采用云端与边缘端协作的方式,实现工业数据的分布式本地处理,在多源数据的分析中保障源数据的私密性与安全性。首先,在云端设计了任务流图,将多源数据分析过程分解成多个子任务;其次,设计了子任务管理、编译和运行控制、数据集成传输、基本算法库和管理组件五个模块,实现子任务的本地边缘端处理;最后,本文以大型客机制造过程为例,对Fog-IBDIS的运行过程进行了验证,其通过边缘与云端的协作方式,将多来源数据分析任务分解至本地执行,通过中间结果的传输串联实现工业大数据的分析,可保障原始数据的私密性与安全性。

Abstract

Industrial big data integration and sharing (IBDIS) is of great significance in managing and providing data for big data analysis in manufacturing systems. A novel fog-computing-based IBDIS approach called Fog-IBDIS is proposed in order to integrate and share industrial big data with high raw data security and low network traffic loads by moving the integration task from the cloud to the edge of networks. First, a task flow graph (TFG) is designed to model the data analysis process. The TFG is composed of several tasks, which are executed by the data owners through the Fog-IBDIS platform in order to protect raw data privacy. Second, the function of Fog-IBDIS to enable data integration and sharing is presented in five modules: TFG management, compilation and running control, the data integration model, the basic algorithm library, and the management component. Finally, a case study is presented to illustrate the implementation of Fog-IBDIS, which ensures raw data security by deploying the analysis tasks executed by the data generators, and eases the network traffic load by greatly reducing the volume of transmitted data.

关键词

雾计算 / 工业大数据 / 多源数据 / 数据集成

Keywords

Fog computing / Industrial big data / Integration / Manufacturing system

引用本文

导出引用
Junliang Wang, Peng Zheng, Youlong Lv. Fog-IBDIS——基于雾计算的制造系统大数据集成方法. Engineering. 2019, 5(4): 662-670 https://doi.org/10.1016/j.eng.2018.12.013

参考文献

[1]
Hughes D, Ueyama J, Mendiondo E, Matthys N, Horré W, Michiels S, et al. A middleware platform to support river monitoring using wireless sensor networks. J Braz Comput Soc 2011;17(2):85–102.
[2]
Jiang P, Ding K, Leng J. Towards a cyber–physical–social-connected and service-oriented manufacturing paradigm: social manufacturing. Manuf Lett 2016;7:15–21.
[3]
Wang JL, Zhang J. Big data analytics for forecasting cycle time in semiconductor wafer fabrication system. Int J Prod Res 2016;54(23):7231–44.
[4]
Wang JL, Zhang J, Wang XX. Bilateral LSTM: a two-dimensional long shortterm memory model with multiply memory units for short-term cycle time forecasting in re-entrant manufacturing systems. IEEE Trans Industr Inform 2018;14(2):748–58.
[5]
Zhang WJ, Lin Y. On the principle of design of resilient systems—application to enterprise information systems. Enterprise Inf Syst 2010;4(2):99–110.
[6]
Zhang WJ, van Luttervelt CA. Toward a resilient manufacturing system. CIRP Ann 2011;60(1):469–72.
[7]
Tsuda T, Inoue S, Kayahara A, Imai S, Tanaka T, Sato N, et al. Advanced semiconductor manufacturing using big data. IEEE Trans Semicond Manuf 2015;28(3):229–35.
[8]
Lu C, Li X, Gao L, Liao W, Yi J. An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times. Comput Ind Eng 2017;104:156–74.
[9]
Lei CU, Man KL, Liang HN, Lim EG, Wan KY. Building an intelligent laboratory environment via a cyber–physical system. Int J Distrib Sens Netw 2013;9 (12):109014.
[10]
Wang JL, Zhang J, Wang XX. A data driven cycle time prediction with feature selection in a semiconductor wafer fabrication system. IEEE Trans Semicond Manuf 2018;31(1):173–82.
[11]
Wang W, Chong W, Liu D, Liang HN, Man KL, Han YS, et al. An examination of the internet of things through the data management perspective. J Platf Technol 2014;2(2):16–30.
[12]
Lu C, Gao L, Li XY, Chen P. Energy-efficient multi-pass turning operation using multi-objective backtracking search algorithm. J Clean Prod 2016; 137:1516–31.
[13]
Lu C, Gao L, Li XY, Xiao SQ. A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Eng Appl Artif Intell 2017;57:61–79.
[14]
Kusiak A, Xu GL. Modeling and optimization of HVAC systems using a dynamic neural network. Energy 2012;42(1):241–50.
[15]
Zhong RY, Xu C, Chen C, Huang GQ. Big data analytics for physical Internetbased intelligent manufacturing shop floors. Int J Prod Res 2017;55(9):2610–21.
[16]
Zhang W. An integrated environment for CAD/CAM of mechanical systems [dissertation]. Delft: TU Delft; 1994.
[17]
Majkic´ Z. Big data integration theory: theory and methods of database mappings, programming languages, and semantics. Heidelberg: Springer; 2014.
[18]
Wang G, Gunasekaran A, Ngai EWT, Papadopoulos T. Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int J Prod Econ 2016;176:98–110.
[19]
Mourtzis D, Vlachou E, Milas N. Industrial big data as a result of IoT adoption in manufacturing. Procedia CIRP 2016;55:290–5.
[20]
Lim JB, Yu HC, Gil JM. An efficient and energy-aware cloud consolidation algorithm for multimedia big data applications. Symmetry 2017;9(9):184.
[21]
Kadadi A, Agrawal R, Nyamful C, Atiq R. Challenges of data integration and interoperability in big data. In: Proceedings of 2014 IEEE International Conference on Big Data; 2014 Sep 27–30; Washington, DC, USA. Piscataway: IEEE; 2015. p. 38–40.
[22]
Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU. The rise of ‘‘big data” on cloud computing: review and open research issues. Inf Syst 2015;47:98–115.
[23]
Wang JL, Yang JG, Zhang J, Wang XX, Zhang WJ. Big data driven cycle time parallel prediction for production planning in wafer manufacturing. Enterprise Inf Syst 2018;12(6):714–32.
[24]
Pan WK, Yang Q, Aggarwal C, Koch C. Big data. IEEE Intell Syst 2017;32(2):7–8.
[25]
Xiang F, Yin Q, Wang Z, Jiang GZ. Systematic method for big manufacturing data integration and sharing. Int J Adv Manuf Technol 2018;94(9– 12):3345–58.
[26]
Ma’ayan A, Rouillard AD, Clark NR, Wang ZC, Duan QN, Kou Y. Lean big data integration in systems biology and systems pharmacology. Trends Pharmacol Sci 2014;35(9):450–60.
[27]
Mezghani E, Exposito E, Drira K, Da Silveira M, Pruski C. A semantic big data platform for integrating heterogeneous wearable data in healthcare. J Med Syst 2015;39(12):185.
[28]
Jiang L, Xu LD, Cai H, Jiang Z, Bu F, Xu B. An IoT-oriented data storage framework in cloud computing platform. IEEE Trans Industr Inform 2014;10 (2):1443–51.
[29]
Chang BR, Tsai HF, Tsai YC, Kuo CF, Chen CC. Integration and optimization of multiple big data processing platforms. Eng Comput 2016;33(6):1680–704.
[30]
Suárez-Albela M, Fernández-Caramés TM, Fraga-Lamas P, Castedo L. A practical evaluation of a high-security energy-efficient gateway for IoT fog computing applications. Sensors 2017;17(9):E1978.
[31]
Liu X, Zhang WJ, Radhakrishnan R, Tu YL. Manufacturing perspective of enterprise application integration: the state of the art review. Int J Prod Res 2008;46(16):4567–96.
[32]
Varghese B, Wang N, Barbhuiya S, Kilpatrick P, Nikolopoulos DS. Challenges and opportunities in edge computing. In: Proceedings of IEEE International Conference on Smart Cloud; 2016 Nov 18–20; New York, NY, USA. Piscataway: IEEE; 2016. p. 20–6.
[33]
Shi W, Dustdar S. The promise of edge computing. Computer 2016;49 (5):78–81.
[34]
Zhang Q, Zhang XH, Zhang QY, Shi WS, Zhong H. Firework: big data sharing and processing in collaborative edge environment. In: Proceedings of the 4th IEEE Workshop on Hot Topics in Web Systems and Technologies; 2016 Oct 24–25; Washington, DC, USA. Piscataway: IEEE; 2016. p. 20–55.
[35]
Tang B, Chen Z, Hefferman G, Wei T, He H, Yang Q. A hierarchical distributed fog computing architecture for big data analysis in smart cities. In: Proceedings of the ASE Big Data & Social Informatics; 2015 Oct 7–9; Kaohsiung, Taiwan, China. New York: ACM; 2015.
[36]
Kumar N, Zeadally S, Rodrigues JJPC. Vehicular delay-tolerant networks for smart grid data management using mobile edge computing. IEEE Commun Mag 2016;54(10):60–6.
[37]
Liu JQ, Wan JF, Zeng B, Wang QR, Song HB, Qiu MK. A scalable and quickresponse software defined vehicular network assisted by mobile edge computing. IEEE Commun Mag 2017;55(7):94–100.
[38]
Park HD, Min OG, Lee YJ. Scalable architecture for an automated surveillance system using edge computing. J Supercomput 2017;73(3):926–39.
PDF(1864 KB)

Accesses

Citation

Detail

段落导航
相关文章

/