高压纳米X射线成像技术的应用

工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 479-489.

PDF(2578 KB)
PDF(2578 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 479-489. DOI: 10.1016/j.eng.2019.01.006
研究论文
Research Deep Matter & Energy—Article

高压纳米X射线成像技术的应用

作者信息 +

Applications for Nanoscale X-Ray Imaging at High Pressure

Author information +
History +

Abstract

Coupling nanoscale transmission X-ray microscopy (nanoTXM) with a diamond anvil cell (DAC) has exciting potential as a powerful three-dimensional probe for non-destructive imaging at high spatial resolution of materials under extreme conditions. In this article, we discuss current developments in high-resolution X-ray imaging and its application in high-pressure nanoTXM experiments in a DAC with third-generation synchrotron X-ray sources, including technical considerations for preparing successful measurements. We then present results from a number of recent in situ high-pressure measurements investigating equations of state (EOS) in amorphous or poorly crystalline materials and in pressure-induced phase transitions and electronic changes. These results illustrate the potential this technique holds for addressing a wide range of research areas, ranging from condensed matter physics and solid-state chemistry to materials science and planetary interiors. Future directions for this exciting technique and opportunities to improve its capabilities for broader application in high-pressure science are discussed.

Keywords

X-ray imaging / High pressure / Diamond anvil cell

引用本文

导出引用
. . Engineering. 2019, 5(3): 479-489 https://doi.org/10.1016/j.eng.2019.01.006

参考文献

[1]
Dubrovinsky L., Dubrovinskaia N., Bykova E., Bykov M., Prakapenka V., Prescher C., . The most incompressible metal osmium at static pressures above 750 gigapascals. Nature. 2015; 525(7568): 226-229.
[2]
Mao H.K., Mao W.L.. Theory and practice—diamond-anvil cells and probes for high P-T mineral physics studies. In: editor. Treatise on geophysics: mineral physics. Amsterdam: Elsevier; 2007. p. 231-268.
[3]
Frankel R.I.. Centennial of Röntgen’s discovery of X-rays. West J Med. 1996; 164(6): 497-501.
[4]
Du Plessis A., Le Roux S.G., Guelpa A.. Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud Nondestr Test Eval. 2016; 6: 17-25.
[5]
Landis E.N., Keane D.T.. X-ray microtomography. Mater Charact. 2010; 61(12): 1305-1316.
[6]
Liu Y., Kiss A.M., Larsson D.H., Yang F., Pianetta P.. To get the most out of high resolution X-ray tomography: a review of the post-reconstruction analysis. Spectrochim Acta B At Spectrosc. 2016; 117: 29-41.
[7]
Bautz W., Kalender W., Godfrey N.. Hounsfield and his effect on radiology. Radiologe. 2005; 45(4): 350-355. German
[8]
Sakdinawat A., Attwood D.. Nanoscale X-ray imaging. Nat Photonics. 2010; 4(12): 840-848.
[9]
Chang C., Sakdinawat A.. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. Nat Commun. 2014; 5(1): 4243.
[10]
Shi C.Y., Zhang L., Yang W., Liu Y., Wang J., Meng Y., . Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat Geosci. 2013; 6(11): 971-975.
[11]
Larabell C.A., Nugent K.A.. Imaging cellular architecture with X-rays. Curr Opin Struct Biol. 2010; 20(5): 623-631.
[12]
Wei C., Xia S., Huang H., Mao Y., Pianetta P., Liu Y.. Mesoscale battery science: the behavior of electrode particles caught on a multispectral X-ray camera. Acc Chem Res. 2018; 51(10): 2484-2492.
[13]
Andrews J.C., Weckhuysen B.M.. Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work. Chem Phys Chem. 2013; 14(16): 3655-3666.
[14]
Meirer F., Cabana J., Liu Y., Mehta A., Andrews J.C., Pianetta P.. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J Synchrotron Radiat. 2011; 18: 773-781.
[15]
Liu Y., Meirer F., Wang J., Requena G., Williams P., Nelson J., . 3D elemental sensitive imaging using transmission X-ray microscopy. Anal Bioanal Chem. 2012; 404(5): 1297-1301.
[16]
Andrews J.C., Almeida E., Van der Meulen M.C., Alwood J.S., Lee C., Liu Y., . Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. Microsc Microanal. 2010; 16(3): 327-336.
[17]
Liu Y., Meirer F., Williams P.A., Wang J., Andrews J.C., Pianetta P.. TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy. J Synchrotron Radiat. 2012; 19(Pt 2): 281-287.
[18]
Gürsoy D., De Carlo F., Xiao X., Jacobsen C.. TomoPy: a framework for the analysis of synchrotron tomographic data. J Synchrotron Radiat. 2014; 21: 1188-1193.
[19]
Yang X., De Carlo F., Phatak C., Gürsoy D.. A convolutional neural network approach to calibrating the rotation axis for X-ray computed tomography. J Synchrotron Radiat. 2017; 24: 469-475.
[20]
Yang Y., Yang F., Hingerl F.F., Xiao X., Liu Y., Wu Z., . Registration of the rotation axis in X-ray tomography. J Synchrotron Radiat. 2015; 22(2): 452-457.
[21]
Guizar-Sicairos M., Boon J.J., Mader K., Diaz A., Menzel A., Bunk O.. Quantitative interior X-ray nanotomography by a hybrid imaging technique. Optica. 2015; 2(3): 259-266.
[22]
Gürsoy D., Hong Y.P., He K., Hujsak K., Yoo S., Chen S., . Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection. Sci Rep. 2017; 7(1): 11818.
[23]
Yu H., Xia S., Wei C., Mao Y., Larsson D., Xiao X., . Automatic projection image registration for nanoscale X-ray tomographic reconstruction. J Synchrotron Radiat. 2018; 25: 1819-1826.
[24]
Liu Y., Wang J., Azuma M., Mao W.L., Yang W.. Five-dimensional visualization of phase transition in BiNiO3 under high pressure. Appl Phys Lett. 2014; 104(4): 043108.
[25]
Wang J.Y., Yang W., Wang S., Xiao X., De Carlo F., Liu Y., . High pressure nano-tomography using an iterative method. J Appl Phys. 2012; 111(11): 112626.
[26]
Duan X., Yang F., Antono E., Yang W., Pianetta P., Ermon S., . Unsupervised data mining in nanoscale X-ray spectro-microscopic study of NdFeB magnet. Sci Rep. 2016; 6(1): 34406.
[27]
Xu Y., Hu E., Zhang K., Wang X., Borzenets V., Sun Z., . In situ visualization of state-of-charge heterogeneity within a LiCoO2 particle that evolves upon cycling at different rates. ACS Energy Lett. 2017; 2(5): 1240-1245.
[28]
Lin Y., Zeng Q., Yang W., Mao W.L.. Pressure-induced densification in GeO2 glass: a transmission X-ray microscopy study. Appl Phys Lett. 2013; 103(26): 261909.
[29]
Zeng Q., Kono Y., Lin Y., Zeng Z., Wang J., Sinogeikin S.V., . Universal fractional noncubic power law for density of metallic glasses. Phys Rev Lett. 2014; 112(18): 185502.
[30]
Liu H., Wang L., Xiao X., De Carlo F., Feng J., Mao H.K., . Anomalous high-pressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography. Proc Natl Acad Sci USA. 2008; 105(36): 13229-13234.
[31]
Zeng Q., Lin Y., Liu Y., Zeng Z., Shi C.Y., Zhang B., . General 2.5 power law of metallic glasses. Proc Natl Acad Sci USA. 2016; 113(7): 1714-1718.
[32]
Chen D.Z., Shi C.Y., An Q., Zeng Q., Mao W.L., Goddard W.A.3rd, . Fractal atomic-level percolation in metallic glasses. Science. 2015; 349(6254): 1306-1310.
[33]
Lin Y., Zhang L., Mao H.K., Chow P., Xiao Y., Baldini M., . Amorphous diamond: a high-pressure superhard carbon allotrope. Phys Rev Lett. 2011; 107(17): 175504.
[34]
Lee S.K., Lin J.F., Cai Y.Q., Hiraoka N., Eng P.J., Okuchi T., . X-ray Raman scattering study of MgSiO3 glass at high pressure: implication for triclustered MgSiO3 melt in Earth’s mantle. Proc Natl Acad Sci USA. 2008; 105(23): 7925-7929.
[35]
Murakami M., Goncharov A.F., Hirao N., Masuda R., Mitsui T., Thomas S.M., . High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas. Nat Commun. 2014; 5(1): 5428.
[36]
Petitgirard S., Malfait W.J., Sinmyo R., Kupenko I., Hennet L., Harries D., . Fate of MgSiO3 melts at core-mantle boundary conditions. Proc Natl Acad Sci USA. 2015; 112(46): 14186-14190.
[37]
Sato T., Funamori N.. High-pressure structural transformation of SiO2 glass up to 100 GPa. Phys Rev B Condens Matter Mater Phys. 2010; 82(18): 184102.
[38]
Wu M., Liang Y., Jiang J.Z., Tse J.S.. Structure and properties of dense silica glass. Sci Rep. 2012; 2(1): 398.
[39]
Zha C., Hemley R.J., Mao H., Duffy T.S., Meade C.. Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering. Phys Rev B Condens Matter. 1994; 50(18): 13105-13112.
[40]
Sato T., Funamori N.. Sixfold-coordinated amorphous polymorph of SiO2 under high pressure. Phys Rev Lett. 2008; 101(25): 255502.
[41]
Murakami M., Bass J.D.. Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass. Phys Rev Lett. 2010; 104(2): 025504.
[42]
Williams Q., Jeanloz R.. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science. 1988; 239(4842): 902-905.
[43]
Stixrude L., Karki B.. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science. 2005; 310(5746): 297-299.
[44]
Shen G., Mei Q., Prakapenka V.B., Lazor P., Sinogeikin S., Meng Y., . Effect of helium on structure and compression behavior of SiO2 glass. Proc Natl Acad Sci USA. 2011; 108(15): 6004-6007.
[45]
Clark A.N., Lesher C.E., Jacobsen S.D., Wang Y.. Anomalous density and elastic properties of basalt at high pressure: reevaluating of the effect of melt fraction on seismic velocity in the Earth’s crust and upper mantle. J Geophys Res Solid Earth. 2016; 121(6): 4232-4248.
[46]
Ghosh D.B., Karki B.B., Stixrude L.. First-principles molecular dynamics simulations of MgSiO3 glass: structure, density, and elasticity at high pressure. Am Mineral. 2014; 99(7): 1304-1314.
[47]
Jiang H., Xu R., Chen C.C., Yang W., Fan J., Tao X., . Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution. Phys Rev Lett. 2013; 110(20): 205501.
[48]
Miao J., Ishikawa T., Robinson I.K., Murnane M.M.. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science. 2015; 348(6234): 530-535.
[49]
Yang W., Huang X., Harder R., Clark J.N., Robinson I.K., Mao H.K.. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat Commun. 2013; 4(1): 1680.
[50]
Eriksson M., Van der Veen J.F., Quitmann C.. Diffraction-limited storage rings—a window to the science of tomorrow. J Synchrotron Radiat. 2014; 21: 837-842.
[51]
McNeil B.W.J., Thompson N.R.. X-ray free-electron lasers. Nat Photonics. 2010; 4(12): 814-821.
Acknowledgements

This work was supported by the Department of Energy (DOE) through the Stanford Institute for Materials & Energy Sciences (DE-AC02-76SF00515).

Compliance with ethics guidelines

Wendy L. Mao, Yu Lin, Yijin Liu, and Jin Liu declare that they have no conflict of interest or financial conflicts to disclose.

版权

2019 THE AUTHORS
PDF(2578 KB)

Accesses

Citation

Detail

段落导航
相关文章

/