极端条件下材料化学和输运性质的第一原理研究

工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 421-433.

PDF(3291 KB)
PDF(3291 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 421-433. DOI: 10.1016/j.eng.2019.01.008
研究论文
Research Deep Matter & Energy—Review

极端条件下材料化学和输运性质的第一原理研究

作者信息 +

First-Principles Methods in the Investigation of the Chemical and Transport Properties of Materials under Extreme Conditions

Author information +
History +

Abstract

Earth is a dynamic system. The thermodynamics conditions of Earth vary drastically depending on the depth, ranging from ambient temperature and pressure at the surface to 360 GPa and 6600 K at the core. Consequently, the physical and chemical properties of Earth’s constituents (e.g., silicate and carbonate minerals) are strongly affected by their immediate environment. In the past 30 years, there has been a tremendous amount of progress in both experimental techniques and theoretical modeling methods for material characterization under extreme conditions. These advancements have elevated our understanding of the properties of minerals, which is essential in order to achieve full comprehension of the formation of this planet and the origin of life on it. This article reviews recent computational techniques for predicting the behavior of materials under extreme conditions. This survey is limited to the application of the first-principles molecular dynamics (FPMD) method to the investigation of chemical and thermodynamic transport processes relevant to Earth Science.

Keywords

High pressure / High temperature / Earth mantle / Molecular dynamics / Density functional method / Transport properties / Chemical reactivity

引用本文

导出引用
. . Engineering. 2019, 5(3): 421-433 https://doi.org/10.1016/j.eng.2019.01.008

参考文献

[1]
Atlas Ovscura [Internet]. Kola superdeep borehole. [cited 2018 Aug 23], Available from: https://www.atlasobscura.com/places/kola-superdeep-borehole.
[2]
Williamson E.D., Adams L.H.. Density distribution in the Earth. J Wash Acad Sci. 1923; 13: 413-428.
[3]
In: editor. Treatise on geophysics: mineral physics. 2nd ed. Amsterdam: Elsevier; 2015.
[4]
Pauling L.. The nature of the chemical bond. 3rd ed.
[5]
In: editor. Cambridge: Academic Press; 1981.
[6]
D’Ariano G.M., Chiribella G., Perinotti P.. Quantum theory from first principles: an informational approach.
[7]
Cohen M.L., Louie S.G.. Fundamental of condensed matter physics.
[8]
McQuarrie D.A.. Statistical mechanics.
[9]
Verlet L.. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones Molecule. Phys Rev. 1967; 159(1): 98-103.
[10]
Verlet L.. Computer, “experiments” on classical fluids. II. Equilibrium correlation functions. Phys Rev. 1968; 165(1): 201-214.
[11]
Levesque D., Verlet L.. Molecular dynamics calculations of transport coefficients. Mol Phys. 1987; 61(1): 143-159.
[12]
In: editor. Molecular-dynamics simulation of statistical-mechanical systems. North-Holland: Amsterdam; 1986. p. 424-476.
[13]
Van Beest B.W.H., Kramer G.J., van Santen R.. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett. 1990; 64(16): 1955-1958.
[14]
Tsuneyuki S., Tsukada M., Aoki H., Matsui Y.. First-principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett. 1988; 61(7): 869-872.
[15]
Tse J.S., Klug D.D.. The structure and dynamics of silica polymorphs using a two-body effective potential. J Chem Phys. 1991; 95(12): 9176-9185.
[16]
Vočadlo L., Patel A., Price G.D.. Molecular dynamics: some recent developments in classical and quantum mechanical simulation of minerals. Mineral Mag. 1995; 59(397): 597-605.
[17]
Martin R.M.. Electronic structure: basic theory and practical methods.
[18]
Hohenberg P., Kohn W.. Homogeneous electron gas. Phys Rev. 1964; 136(3B): 864-871.
[19]
Sham L.J., Kohn W.. One-particle properties of an inhomogeneous interacting electron gas. Phys Rev. 1966; 145(2): 561-566.
[20]
Ceperley D.M., Alder B.J.. Ground state of the electron gas by a stochastic method. Phys Rev Lett. 1980; 45(7): 566-569.
[21]
Perdew J.P., Schmidt K.. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc. 2001; 577: 1-19.
[22]
Sun J., Ruzsinszky A., Perdew J.P.. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett. 2015; 115(3): 036402.
[23]
Peng H., Yang Z., Perdew J.P., Sun J.. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys Rev X. 2016; 6(4): 041005.
[24]
Feynman R.P.. Forces in molecules. Phys Rev. 1939; 56(4): 340-342.
[25]
Payne M.C., Teter M.P., Allan D.C., Arias T.A., Joannopoulos J.D.. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys. 1992; 64(4): 1045-1097.
[26]
Marx D., Hutter J.. Ab initio molecular dynamics.
[27]
Tuckerman M.E.. Statistical mechanics: theory and molecular simulation.
[28]
Ladd A.J.C., Moran B., Hoover W.G.. Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys Rev B Condens Matter. 1986; 34(8): 5058-5064.
[29]
Du X., Tse J.S.. Oxygen packing fraction and the structure of silicon and germanium oxide glasses. J Phys Chem B. 2017; 121(47): 10726-10732.
[30]
Du X., Wang Z., Wang H., Iitaka T., Pan Y., Wang H., . Structures and stability of iron halides at the Earth’s mantle and core pressures: implication for the missing halogen paradox. ACS Earth Space Chem. 2018; 2(7): 711-719.
[31]
Yong X., Tse J.S., Chen J.. Mechanism of chemical reactions between SiO2 and CO2 under mantle conditions. ACS Earth Space Chem. 2018; 2(6): 548-555.
[32]
Futera Z., Yong X., Pan Y., Tse J.S., English N.J.. Formation and properties of water from quartz and hydrogen at high pressure and temperature. Earth Planet Sci Lett. 2017; 461: 54-60.
[33]
Du X., Wu M., Tse J.S., Pan Y.. Structures and transport properties of CaCO3 melts under Earth’s mantle conditions. ACS Earth Space Chem. 2018; 2(1): 1-8.
[34]
Tse J.S., English N.J., Yin K., Iitaka T.. Thermal conductivity of solids from first-principles molecular dynamics calculations. J Phys Chem C. 2018; 122(20): 10682-10690.
[35]
Zeidler A., Salmon P.S., Skinner L.B.. Packing and the structural transformations in liquid and amorphous oxides from ambient to extreme conditions. Proc Natl Acad Sci USA. 2014; 111(28): 10045-10048.
[36]
Wu M., Liang Y., Jiang J.Z., Tse J.S.. Structure and properties of dense silica glass. Sci Rep. 2012; 2: 398.
[37]
Gibbs G.V., Wang D., Hin C., Ross N.L., Cox D.F., Crawford T.D., . Properties of atoms under pressure: bonded interactions of the atoms in three perovskites. J Chem Phys. 2012; 137(16): 164313.
[38]
Bader R.F.W.. Atoms in molecules: a quantum theory.
[39]
Wu M., Tse J.S., Wang S.Y., Wang C.Z., Jiang J.Z.. Origin of pressure-induced crystallization of Ce75Al25 metallic glass. Nat Commun. 2015; 6: 6493.
[40]
Oganov A.R.. Modern methods of crystal structure prediction.
[41]
Zhang L., Wang Y., Lv J., Ma Y.. Materials discovery at high pressures. Nat Rev Mater. 2017; 2(4): 17005.
[42]
Wang Y., Lv J., Zhu L., Ma Y.. Crystal structure prediction via particle-swarm optimization. Phys Rev B Condens Matter Mater Phys. 2010; 82(9): 094116.
[43]
Santoro M., Gorelli F., Haines J., Cambon O., Levelut C., Garbarino G.. Silicon carbonate phase formed from carbon dioxide and silica under pressure. Proc Natl Acad Sci USA. 2011; 108(19): 7689-7692.
[44]
Woodward R.B., Hoffman R.. The conservation of orbital symmetry.
[45]
Shinozaki A., Kagi H., Noguchi N., Hirai H., Ohfuji H., Okada T., . Formation of SiH4 and H2O by the dissolution of quartz in H2 fluid under high pressure temperature. Am Mineral. 2014; 99(7): 1265-1269.
[46]
Van Duin A.C.T., Dasgupta S., Lorant F., Goddard W.A.. ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A. 2001; 105(41): 9396-9409.
[47]
Van Duin A.C.T., Strachan A., Stewman S., Zhang Q., Xu X., Goddard W.A.. ReaxFFsio reactive force field for silicon and silicon oxide systems. J Phys Chem A. 2003; 107(19): 3803-3811.
[48]
Schwegler E., Galli G., Gygi F., Hood R.Q.. Dissociation of water under pressure. Phys Rev Lett. 2001; 87(26): 265501.
[49]
Kono Y., Kenney-Benson C., Hummer D., Ohfuji H., Park C., Shen G., . Ultralow viscosity of carbonate melts at high pressures. Nat Commun. 2014; 5(1): 5091.
[50]
Stackhouse S., Stixrude L.. Theoretical methods for calculating the lattice thermal conductivity of minerals. Rev Mineral Geochem. 2010; 71(1): 253-269.
[51]
Marcolongo A., Umari P., Baroni S.. Microscopic theory and quantum simulation of atomic heat transport. Nat Phys. 2016; 12(1): 80-84.
[52]
Kinaci A., Haskins J.B., Çağın T.. On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics. J Chem Phys. 2012; 137(1): 014106.
[53]
Tang X., Dong J.. Lattice thermal conductivity of MgO at conditions of Earth’s interior. Proc Natl Acad Sci USA. 2010; 107(10): 4539-4543.
[54]
Dalton D.A., Hsieh W.P., Hohensee G.T., Cahill D.G., Goncharov A.F.. Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure. Sci Rep. 2013; 3(1): 2400.
[55]
Imada S., Ohta K., Yagi T., Hirose K., Yoshida H., Nagahara H.. Measurements of lattice thermal conductivity of MgO to core mantle boundary pressures. Geophys Res Lett. 2014; 41(13): 4542-4547.
[56]
Reissland J.A.. The physics of phonon.
[57]
Speziale S., Zha C.S., Duffy T.S., Hemley R.J., Mao H.K.. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure–volume–temperature equation of state. J Geophys Res. 2001; 106(B1): 515-528.
[58]
Hu Y., Wu Z., Dera P.K., Bina C.R.. Thermodynamic and elastic properties of pyrope at high pressure and high temperature by first-principles calculations. J Geophys Res Solid Earth. 2016; 121(9): 6462-6476.
[59]
Martorell B., Vocadlo L., Brodholt J., Wood I.G.. Strong premelting effect in the elastic properties of hcp-Fe under inner-core conditions. Science. 2013; 342(6157): 466-468.
[60]
Parrinello M., Rahman A.. Strain fluctuations and elastic constants. J Chem Phys. 1982; 76(5): 2662-2666.
[61]
Sprik M., Impey R.W., Klein M.L.. Second-order elastic constants for the Lennard-Jones solid. Phys Rev B Condens Matter. 1984; 29(8): 4368-4374.
[62]
Tse J.S., Klug D.D.. Mechanical instability of α-quartz: a molecular dynamics study. Phys Rev Lett. 1991; 67(25): 3559-3562.

Acknowledgements

The author wishes to acknowledge his collaborators, Drs. N.J. English, Y. Pan, and T. Iitaka, and previous postdocs and students, Drs. X. Du, M. Wu, and X. Yong, for their contributions to the studies reported here. He also thanks WestGrid (Canada), RIKEN (Japan), and HPSTAR (China) for the allocation of computational resources.

版权

2019 Chinese Academy of Engineering
PDF(3291 KB)

Accesses

Citation

Detail

段落导航
相关文章

/