
深古菌门的核心代谢功能和热环境起源
Core Metabolic Features and Hot Origin of Bathyarchaeota
The archaeal phylum Bathyarchaeota comprises highly diversified subgroups and is considered to be one of the most abundant microorganisms on earth. The metabolic features and evolution of this phylum still remain largely unknown. In this article, a comparative metabolic analysis of 15 newly reconstructed and 36 published metagenomic assembled genomes (MAGs) spanning 10 subgroups was performed, revealing the core metabolic features of Bathyarchaeota—namely, protein, lipid, and benzoate degradation; glycolysis; and the Wood–Ljungdahl (WL) pathway, indicating an acetyl-CoA-centralized metabolism within this phylum. Furthermore, a partial tricarboxylic acid (TCA) cycle, acetogenesis, and sulfur-related metabolic pathways were found in specific subgroups, suggesting versatile metabolic capabilities and ecological functions of different subgroups. Intriguingly, most of the MAGs from the Bathy-21 and -22 subgroups, which are placed at the phylogenetic root of all bathyarchaeotal lineages and likely represent the ancient Bathyarchaeota types, were found in hydrothermal environments and encoded reverse gyrase, suggesting a hyperthermophilic feature. This work reveals the core metabolic features of Bathyarchaeota, and indicates a hot origin of this archaeal phylum.
Bathyarchaeota / Metagenomics / Comparative genomics / Hyperthermophilic adaptation
[1] |
Kubo K., Lloyd K.G., Biddle J.F., Amann R., Teske A., Knittel K.. Archaea of the Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine sediments. ISME J. 2012; 6(10): 1949-1965.
|
[2] |
Lloyd K.G., Schreiber L., Petersen D.G., Kjeldsen K.U., Lever M.A., Steen A.D.,
|
[3] |
Meng J., Xu J., Qin D., He Y., Xiao X., Wang F.. Genetic and functional properties of uncultivated MCG Archaea assessed by metagenome and gene expression analyses. ISME J. 2014; 8(3): 650-659.
|
[4] |
He Y., Li M., Perumal V., Feng X., Fang J., Xie J.,
|
[5] |
Xiang X., Wang R., Wang H., Gong L., Man B., Xu Y.. Distribution of Bathyarchaeota communities across different terrestrial settings and their potential ecological functions. Sci Rep. 2017; 7(1): 45028.
|
[6] |
Fry J.C., Parkes R.J., Cragg B.A., Weightman A.J., Webster G.. Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol. 2008; 66(2): 181-196.
|
[7] |
Li Q., Wang F., Chen Z., Yin X., Xiao X.. Stratified active archaeal communities in the sediments of Jiulong River estuary, China. Front Microbiol. 2012; 3: 311.
|
[8] |
Zhou Z., Pan J., Wang F., Gu J.D., Li M.. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev. 2018; 42(5): 639-655.
|
[9] |
Lazar C.S., Baker B.J., Seitz K., Hyde A.S., Dick G.J., Hinrichs K.U.,
|
[10] |
Zhang W., Ding W., Yang B., Tian R., Gu S., Luo H.,
|
[11] |
Yu T., Wu W., Liang W., Lever M.A., Hinrichs K.U., Wang F.. Growth of sedimentary Bathyarchaeota on lignin as an energy source. Proc Natl Acad Sci USA. 2018; 115(23): 6022-6027.
|
[12] |
Evans P.N., Parks D.H., Chadwick G.L., Robbins S.J., Orphan V.J., Golding S.D.,
|
[13] |
Martin W.F., Sousa F.L., Lane N.. Energy at life’s origin. Science. 2014; 344(6188): 1092-1093.
|
[14] |
Fillol M., Auguet J.C., Casamayor E.O., Borrego C.M.. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 2016; 10(3): 665-677.
|
[15] |
Peng Y., Leung H.C., Yiu S.M., Chin F.Y.. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012; 28(11): 1420-1428.
|
[16] |
Langmead B., Salzberg S.L.. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4): 357-359.
|
[17] |
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N.,
|
[18] |
Kang D.D., Froula J., Egan R., Wang Z.. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015; 3: e1165.
|
[19] |
Dick G.J., Andersson A.F., Baker B.J., Simmons S.L., Thomas B.C., Yelton A.P.,
|
[20] |
Albertsen M., Hugenholtz P., Skarshewski A., Nielsen K.L., Tyson G.W., Nielsen P.H.. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013; 31(6): 533-538.
|
[21] |
Parks D.H., Imelfort M., Skennerton C.T., Hugenholtz P., Tyson G.W.. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015; 25(7): 1043-1055.
|
[22] |
Anantharaman K., Brown C.T., Hug L.A., Sharon I., Castelle C.J., Probst A.J.,
|
[23] |
Dombrowski N., Seitz K.W., Teske A.P., Baker B.J.. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome. 2017; 5(1): 106.
|
[24] |
Butterfield C.N., Li Z., Andeer P.F., Spaulding S., Thomas B.C., Singh A.,
|
[25] |
Jungbluth S.P., Glavina del Rio T.. Tringe SG, Stepanauskas R, Rappé MS. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. PeerJ. 2017; 5: e3134.
|
[26] |
Parks D.H., Rinke C., Chuvochina M., Chaumeil P.A., Woodcroft B.J., Evans P.N.,
|
[27] |
Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J.,
|
[28] |
Fu L., Niu B., Zhu Z., Wu S., Li W.. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28(23): 3150-3152.
|
[29] |
Katoh K., Misawa K., Kuma K., Miyata T.. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002; 30(14): 3059-3066.
|
[30] |
Stamatakis A.. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014; 30(9): 1312-1313.
|
[31] |
Letunic I., Bork P.. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011; 39(Suppl 2): W475-W478.
|
[32] |
Hyatt D., Chen G.L., Locascio P.F., Land M.L., Larimer F.W., Hauser L.J.. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 2010; 11(1): 119.
|
[33] |
Kanehisa M., Goto S.. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000; 28(1): 27-30.
|
[34] |
Tatusov R.L., Fedorova N.D., Jackson J.D., Jacobs A.R., Kiryutin B., Koonin E.V.,
|
[35] |
Rawlings N.D., Waller M., Barrett A.J., Bateman A.. MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2014; 42(D1): D503-D509.
|
[36] |
Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B.. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014; 42(D1): D490-D495.
|
[37] |
Bagos P.G., Tsirigos K.D., Plessas S.K., Liakopoulos T.D., Hamodrakas S.J.. Prediction of signal peptides in Archaea. Protein Eng Des Sel. 2009; 22(1): 27-35.
|
[38] |
Sorek R., Zhu Y., Creevey C.J., Francino M.P., Bork P., Rubin E.M.. Genome-wide experimental determination of barriers to horizontal gene transfer. Science. 2007; 318(5855): 1449-1452.
|
[39] |
Csurös M.. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010; 26(15): 1910-1912.
|
[40] |
Lazar C.S., Biddle J.F., Meador T.B., Blair N., Hinrichs K.U., Teske A.P.. Environmental controls on intragroup diversity of the uncultured benthic Archaea of the Miscellaneous Crenarchaeotal Group lineage naturally enriched in anoxic sediments of the White Oak River estuary (North Carolina, USA). Environ Microbiol. 2015; 17(7): 2228-2238.
|
[41] |
Wakeham S.G., Lee C., Hedges J.I., Hernes P.J., Peterson M.J.. Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta. 1997; 61(24): 5363-5369.
|
[42] |
Heuer V.B., Pohlman J.W., Torres M.E., Elvert M., Hinrichs K.U.. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin. Geochim Cosmochim Acta. 2009; 73(11): 3323-3336.
|
[43] |
Seyler L.M., McGuinness L.M., Kerkhof L.J.. Crenarchaeal heterotrophy in salt marsh sediments. ISME J. 2014; 8(7): 1534-1543.
|
[44] |
Yu T., Liang Q., Niu M., Wang F.. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers. Environ Microbiol Rep. 2017; 9(4): 374-382.
|
[45] |
Lever M.A., Heuer V.B., Morono Y., Masui N., Schmidt F., Alperin M.J.,
|
[46] |
Richter K., Haslbeck M., Buchner J.. The heat shock response: life on the verge of death. Mol Cell. 2010; 40(2): 253-266.
|
[47] |
Spang A., Caceres E.F.. Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017; 357(6351): eaaf3883.
|
This work was financially supported by the National Natural Science Foundation of China (41525011, 91751205, and 31661143022), and the Deep Carbon Observatory project.
Xiaoyuan Feng, Yinzhao Wang, Rahul Zubin, and Fengping Wang declare that they have no conflict of interest or financial conflicts to disclose.
/
〈 |
|
〉 |