高压下铜-氢化合物体系的结构研究

工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 505-509.

PDF(776 KB)
PDF(776 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 505-509. DOI: 10.1016/j.eng.2019.03.001
研究论文
Research Deep Matter & Energy—Article

高压下铜-氢化合物体系的结构研究

作者信息 +

Structural Studies on the Cu-H System under Compression

Author information +
History +

Abstract

Hydrogen chemistry at extreme pressures is currently subject to extensive research due to the observed and predicted enhanced physical properties when hydrogen is incorporated in numerous binary systems. Despite the high reactivity of hydrogen, the noble metals (Cu, Ag, and Au) display an outstanding resilience to hydride formation, with no reports of a stable compound with a hydrogen molar ratio ≥ 1 at room temperature. Here, through extreme compression and in situ laser heating of pure copper in a hydrogen atmosphere, we explore the affinity of these elements to adopt binary compounds. We report on the phase behavior and stabilities in the Cu–H system, analyzed via synchrotron X-ray diffraction, up to pressures of 50 GPa. We confirm the existence of the previously reported γ0-CuH0.15, γ1-CuH0.5, and ε-Cu2H phases. Most notably, we report the highest hydrogen-content noble-metal hydride stable at room temperature to date: γ2-CuH0.65, which was synthesized through laser heating. This study furthers our understanding of hydrogen-transition metal chemistry and may find applicability in future hydrogen-storage applications.

Keywords

High pressure / Hydrogen storage / Noble metal chemistry

引用本文

导出引用
. . Engineering. 2019, 5(3): 505-509 https://doi.org/10.1016/j.eng.2019.03.001

参考文献

[1]
Drozdov A.P., Eremets M.I., Troyan I.A., Ksenofontov V., Shylin S.I.. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 2015; 525: 73-76.
[2]
Somayazulu M.S., Finger L.W., Hemley R.J., Mao H.. High-pressure compounds in methane-hydrogen mixtures. Science. 1996; 271(5254): 1400-1402.
[3]
Binns J., Dalladay-Simpson P., Wang M., Ackland G.J., Gregoryanz E., Howie R.T.. Formation of H2-rich iodine-hydrogen compounds at high pressure. Phys Rev B. 2018; 97(2): 024111.
[4]
Howie R.T., Guillaume C.L., Scheler T., Goncharov A.F., Gregoryanz E.. Mixed molecular and atomic phase of dense hydrogen. Phys Rev Lett. 2012; 108(12): 125501.
[5]
Dalladay-Simpson P., Howie R.T., Gregoryanz E.. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature. 2016; 529(7584): 63-67.
[6]
Howie R.T., Turnbull R., Binns J., Frost M., Dalladay-Simpson P., Gregoryanz E.. Formation of xenon-nitrogen compounds at high pressure. Sci Rep. 2016; 6(1): 34896.
[7]
Binns J., Dalladay-Simpson P., Wang M., Gregoryanz E., Howie R.T.. Enhanced reactivity of lithium and copper at high pressure. J Phys Chem Lett. 2018; 9(11): 3149-3153.
[8]
Li B., Ding Y., Kim D.Y., Ahuja R., Zou G., Mao H.K.. Rhodium dihydride (RhH2) with high volumetric hydrogen density. Proc Natl Acad Sci USA. 2011; 108(46): 18618-18621.
[9]
Kim D.Y., Scheicher R.H., Pickard C.J., Needs R.J., Ahuja R.. Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen. Phys Rev Lett. 2011; 107(11): 117002.
[10]
Antonov V.E.. Phase transformations, crystal and magnetic structures of high-pressure hydrides of d-metals. J Alloys Compd. 2002; 330–332: 110-116.
[11]
Burtovyy R., Tkacz M.. High-pressure synthesis of a new copper hydride from elements. Solid State Commun. 2004; 131(3–4): 169-173.
[12]
Donnerer C., Scheler T., Gregoryanz E.. High-pressure synthesis of noble metal hydrides. J Chem Phys. 2013; 138(13): 134507.
[13]
Wurtz A.. On copper hydride. C R Hebd Acad Sci Paris. 1844; 18: 702. French
[14]
Hasin P., Wu Y.. Sonochemical synthesis of copper hydride (CuH). Chem Commun. 2012; 48(9): 1302-1304.
[15]
Fukai Y.. The metal-hydride system. 2nd ed.
[16]
Fitzsilmons N.P., Jones W., Herley P.J.. Studies of copper hydride. J Chem Soc. 1995; 91: 713-718.
[17]
Pépin C.M., Geneste G., Dewaele A., Mezouar M., Loubeyre P.. Synthesis of FeH5: a layered structure with atomic hydrogen slabs. Science. 2017; 357(6349): 382-385.
[18]
Wang M., Binns J., Donnelly M.E., Peña-Alvarez M., Dalladay-Simpson P., Howie R.T.. High pressure synthesis and stability of cobalt hydrides. J Chem Phys. 2018; 148(14): 144310.
[19]
Fei Y., Ricolleau A., Frank M., Mibe K., Shen G., Prakapenka V.. Toward an internally consistent pressure scale. Proc Natl Acad Sci USA. 2007; 104(22): 9182-9186.
[20]
Mao H.K., Xu J., Bell P.M.. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res. 1986; 91(B5): 4673.
[21]
Goncharov A.F., Prakapenka V.B., Struzhkin V.V., Kantor I., Rivers M.L., Dalton D.A.. X-ray diffraction in the pulsed laser heated diamond anvil cell. Rev Sci Instrum. 2010; 81(11): 113902.
[22]
Prescher C., Prakapenka V.B.. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res. 2015; 35(3): 223-230.
[23]
Petříček V., Dušek M., Palatinus L.. Crystallographic computing system JANA2006: general features. Z Kristallogr Cryst Mater. 2014; 229(5): 345-352.
[24]
Baranowski B., Bocheńska K.. The free energy and entropy of formation of nickel hydride. Z Phys Chem (NF). 1965; 45(8): 140-152.
[25]
Ponyatovskiĭ E.G., Antonov V.E., Belash I.T.. Properties of high pressure phases in metal-hydrogen systems. Sov Phys Usp. 1982; 25(8): 596-619.
[26]
Prakapenka V.B., Kubo A., Kuznetsov A., Laskin A., Shkurikhin O., Dera P., . Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res. 2008; 28(3): 225-235.
[27]
Dewaele A., Loubeyre P., Mezouar M.. Equations of state of six metals above 94 GPa. Phys Rev B Condens Matter Mater Phys. 2004; 70(9): 1-8.
[28]
Baranowski B., Majchrzak S., Flanagan T.B.. The volume increase of FCC metals and alloys due to interstitial hydrogen over a wide range of hydrogen contents. J Phys F Met Phys. 1971; 1(3): 258-261.
[29]
Somenkov V.A., Glazkov V.P., Irodova A.V., Kurchotov I.V.. Crystal structure and volume effects in the hydrides. J Less Common Met. 1987; 129: 171-180.
[30]
Hemmes H., Driessen A., Griessen R., Gupta M.. Isotope effects and pressure dependence of the Tc of superconducting stoichiometric PdH and PdD synthesized and measured in a diamond anvil cell. Phys Rev B Condens Matter. 1989; 39(7): 4110-4118.
[31]
Scheler T., Degtyareva O., Marqués M., Guillaume C.L., Proctor J.E., Evans S., . Synthesis and properties of platinum hydride. Phys Rev B Condens Matter Mater Phys. 2011; 83(21): 1-5.
[32]
Degtyareva O., Proctor J.E., Guillaume C.L., Gregoryanz E., Hanfland M.. Formation of transition metal hydrides at high pressures. Solid State Commun. 2009; 149: 1583-1586.
[33]
Baranowski B., Filipek S.M.. 45 years of nickel hydride—history and perspectives. J Alloys Compd. 2005; 404–406: 2-6.
Acknowledgements

Philip Dalladay-Simpson and Ross T. Howie acknowledge their respective “1000 Talents” awards. Miriam Peña-Alvarez acknowledges the support of the European Research Council (ERC) Grant HECATE (695527) secured by Graeme Ackland. Parts of this research were conducted at the APS facility under proposal No. 51037 at the GSECARS beamline. Finally, the authors would like to thank Eran Greenberg and Vitali Prakapenka for their assistance during the course of the data collection.

Compliance with ethics guidelines

Jack Binns, Miriam Peña-Alvarez, Mary-Ellen Donnelly, Eugene Gregoryanz, Ross T. Howie, and Philip Dalladay-Simpson declare that they have no conflict of interest or financial conflicts to disclose.

版权

2019 THE AUTHORS
PDF(776 KB)

Accesses

Citation

Detail

段落导航
相关文章

/