俄罗斯雅库特乌达奇纳亚矿区含金刚石橄榄岩中的金刚石、石榴石和橄榄石中碳氢化合物的组成

工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 471-478.

PDF(1779 KB)
PDF(1779 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 471-478. DOI: 10.1016/j.eng.2019.03.002
研究论文
Research Deep Matter & Energy—Article

俄罗斯雅库特乌达奇纳亚矿区含金刚石橄榄岩中的金刚石、石榴石和橄榄石中碳氢化合物的组成

作者信息 +

Composition of Hydrocarbons in Diamonds, Garnet, and Olivine from Diamondiferous Peridotites from the Udachnaya Pipe in Yakutia, Russia

Author information +
History +

Abstract

Volatile components in diamonds, associated garnet (pyrope), and olivine from two extremely rare xenoliths of diamondiferous peridotites recovered from the Udachnaya kimberlite pipe in Yakutia, Russia, were analyzed by gas chromatography–mass spectrometry (GC–MS) using a Focus DSQ II Series Single Quadrupole GC–MS (Thermo Scientific, USA). These xenoliths are pyrope lherzolite and pyrope dunite based upon compositions of coexisting minerals. Unlike the pyrope lherzolite, which contained pyrope with moderate calcium (Ca)-component content (about 15 mol%), the dunite contained subcalcic chromium (Cr)-pyrope with low Ca-component content (less than 10 mol%). All investigated minerals contained dominating hydrocarbons and their derivatives represented by aliphatic (paraffins, olefins), cyclic (naphthenes, arenes), oxygenated (alcohols, ethers), and heterocyclic (dioxanes, furans) hydrocarbons; nitrogenated, chlorinated, and sulfonated compounds; carbon dioxide (CO2); and water (H2O). The relative concentration (rel%) of total hydrocarbon was 79.7 rel% for diamonds, 69.1 rel% for garnet, and 92.6 rel% for olivine, with a general amount of components ranging from 161 to 206. New data on volatiles in diamonds, associated garnet, and olivine suggest the presence of a wide spectrum of hydrocarbons along with nitrogen (N2), CO2, and H2O in some upper mantle areas.

Keywords

Diamond / Volatiles / Hydrocarbons / Pyrope / Olivine / Inclusions

引用本文

导出引用
. . Engineering. 2019, 5(3): 471-478 https://doi.org/10.1016/j.eng.2019.03.002

参考文献

[1]
Tomilenko A.A., Chepurov A.I., Pal’yanov Y.N., Pokhilenko L.N., Shebanin A.P.. Volatile components in the upper mantle (from data on fluid inclusions). Russ Geol Geophys. 1997; 38(1): 294-303.
[2]
Tomilenko A.A., Ragozin A.L., Shatsky V.S., Shebanin A.P.. Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl Earth Sci. 2001; 379(5): 571-574.
[3]
Tomilenko A.A., Kovyazin S.V., Pokhilenko L.N., Sobolev N.V.. Primary hydrocarbon inclusions in garnet of diamondiferous eclogite from the Udachnaya kimberlite pipe, Yakutia. Dokl Earth Sci. 2009; 426(4): 695-698.
[4]
Logvinova A.M., Wirth R., Tomilenko A.A., Afanas’ev V.P., Sobolev N.V.. The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian platform. Russ Geol Geophys. 2011; 52(11): 1286-1297.
[5]
Sobolev N.V., Logvinova A.M., Fedorova E.N., Luk’yanova L.I., Wirth R., Tomilenko A.A., . Mineral and fluid inclusions in the diamonds from the Ural placers, Russia.
[6]
Navon O., Wirth R., Schmidt C., Jablon B.M., Schreiber A., Emmanuel S.. Solid molecular nitrogen (δ-N2) inclusions in Juina diamonds: exsolution at the base of the transition zone. Earth Planet Sci Lett. 2017; 464: 237-247.
[7]
Izraeli E.S., Harris J.W., Navon O.. Raman barometry of diamond formation. Earth Planet Sci Lett. 1999; 123(3): 351-360.
[8]
Tschauner O., Huang S., Greenberg E., Prakapenka V.B., Ma C., Rossman G.R., . Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science. 2018; 359(6380): 1136-1139.
[9]
Sobolev N.V., Fursenko B.A., Goryainov S.V., Shu J., Hemley R.J., Mao A., . Fossilized high pressure from the Earth’s deep interior: the coesite-in-diamond barometer. PNAS. 2000; 97(22): 11875-11879.
[10]
Bardukhinov L.D., Spetsius Z.V., Monkhorov R.V.. Coesite inclusions in Yakutian diamonds. Dokl Earth Sci. 2016; 470(2): 1059-1062.
[11]
Tomilenko A.A., Bul’bak T.A., Khomenko M.O., Kuzmin D.V., Sobolev N.V.. The composition of volatile components in olivines from Yakutian kimberlites of various ages: evidence from gas chromatography-mass spectrometry. Dokl Earth Sci. 2016; 468(2): 626-631.
[12]
Tomilenko A.A., Bul’bak T.A., Pokhilenko L.N., Kuzmin D.V., Sobolev N.V.. Peculiarities of the composition of volatile components in picroilmenites from Yakutian kimberlites of various ages (by gas chromatography-mass spectrometry). Dokl Earth Sci. 2016; 469(1): 690-694.
[13]
Smith E.M., Shirey S.B., Nestola F., Bullock E.S., Wang J., Richardson S.H., . Large gem diamonds from metallic liquid in Earth’s deep mantle. Science. 2016; 354(6318): 1403-1405.
[14]
Jablon B.M., Navon O.. Most diamonds were created equal. Earth Planet Sci Lett. 2016; 443: 41-47.
[15]
Tomilenko A.A., Bul’bak T.A., Logvinova A.M., Sonin V.M., Sobolev N.V.. The composition features of volatile components in diamonds from the placers in the northeastern part of the Siberian platform by gas chromatography–mass spectrometry. Dokl Earth Sci. 2018; 481(1): 955-959.
[16]
Tomilenko A.A., Chepurov A.I., Pal’yanov Yu.N., Shebanin A.P., Sobolev N.V.. Hydrocarbon inclusions in synthetic diamonds. Eur J Miner.. 1998; 10(6): 1135-1141.
[17]
Tomilenko A.A., Kuzmin D.V., Bul’bak T.A., Sobolev N.V.. Primary melt and fluid inclusions in regenerated crystals and phenocrysts of olivine from kimberlites of the Udachnaya-East pipe, Yakutia: the problem of the kimberlite melt. Dokl Earth Sci. 2017; 475(2): 949-952.
[18]
Roedder E.. Fluid inclusions. Reviews in mineralogy.
[19]
Shirey S.B., Cartigny P., Frost D.J., Keshaw S., Nestola F., Nimis P., . Diamonds and the geology of mantle carbon. Rev Miner Geochem. 2013; 75(1): 355-421.
[20]
Sonin V.M., Bul’bak T.A., Zhimulev E.I., Tomilenko A.A., Chepurov A.I., Pokhilenko N.P.. Synthesis of heavy hydrocarbons under P-T conditions of the Earth’s upper mantle. Dokl Earth Sci. 2014; 454(1): 32-36.
[21]
Tomilenko A.A., Chepurov A.I., Sonin V.M., Bul’bak T.A., Zhimulev E.I., Chepurov A.A., . The synthesis of methane and heavier hydrocarbons in the system graphite-iron serpentine at 2 and 4 GPa and 1200 °C. High Temp High Press. 2015; 44(6): 451-465.
[22]
Sokol A.G., Tomilenko A.A., Bul’bak T.A., Sobolev NV.. Synthesis of hydrocarbons by CO2 fluid conversion with hydrogen: experimental modeling at 7.8 GPa and 1350 °C. Dokl Earth Sci. 2017; 477(2): 1483-1487.
[23]
Sokol A.G., Tomilenko A.A., Bul’bak T.A., Kruk A.N., Zaikin P.A., Sokol I.A., . The Fe–C–O–H–N system at 6.3–7.8 GPa and 1200–1400 °C: implications for deep carbon and nitrogen cycles. Contrib Miner Petrol. 2018; 173(6): 47.
[24]
Sobolev V.S.. Formation conditions of diamond deposits. Geol Geofiz (Novosib). 1960; 1(1): 7-23. Russian
[25]
Logvinova A.M., Taylor L.A., Fedorova E.N., Yelisseyev A.P., Wirth R., Howarth G., . A unique diamondiferous peridotite xenolith from the Udachnaya kimberlite pipe, Yakutia: role of subduction in diamond formation. Russ Geol Geophys. 2015; 56(1–2): 306-320.
[26]
Sobolev N.V., Tomilenko A.A., Bul’bak T.A., Logvinova A.M.. Composition of volatile components in diamonds and garnets from unique diamondiferous peridotite of the Udachnaya pipe, Yakutia, Russia.
[27]
Sobolev N.V., Galimov E.M., Ivanovskaia I.N., Yefimova E.S.. Isotopic composition of carbon from diamonds containing crystalline inclusions. Dokl Akad Nauk SSSR. 1979; 249(5): 1217-1220.
[28]
Cartigny P.. Stables isotopes and the origin of diamond. Elements. 2005; 1(2): 79-84.
[29]
Sobolev V.S., Sobolev N.V.. New evidence on subduction to great depths of the eclogitized crustal rocks. Dokl Akad Nauk SSSR. 1980; 250: 683-685. Russian
[30]
Sobolev N.V., Lavrent’ev Y.G., Pospelova L.N., Sobolev E.V.. Chrome pyropes from Yakutian diamonds. Dokl Akad Nauk SSSR. 1969; 189: 162-165.
[31]
Sobolev V.S., Nai B.S., Sobolev N.V., Lavrentev Y.G., Pospelova L.N.. Xenoliths of diamond-bearing pyrope serpentinites from the Aikhal pipe, Yakutia. Dokl Akad Nauk SSSR. 1969; 188(5): 141-143.
[32]
Ilupin I.P., Efimova E.S., Sobolev N.V., Usova L.V., Savrasov D.I., Kharkiv A.D.. Inclusions in diamond from diamondiferous dunite. Dokl Akad Nauk SSSR. 1982; 264: 454-456.
[33]
Pokhilenko N.P., Pearson D.G., Boyd F.R., Sobolev N.V.. Megacrystalline dunites and peridotites: hosts for Siberian diamonds. Annu Rep Director Geophys Lab Carnegie Inst Washington. 1991; 1990–1991: 11-18.
[34]
Sokol A.G., Tomilenko A.A., Bul’bak T.A., Palyanova G.A., Sokol I.A., Palyanov Y.N.. Carbon and nitrogen speciation in N-poor C–O–H–N Fluids at 6.3 GPa and 1100–1400 °C. Sci Rep. 2017; 7(1): 706.
[35]
Sokol A.G., Palyanov Y.N., Tomilenko A.A., Bul’bak T.A., Palyanova G.A.. Carbon and nitrogen speciation in nitrogen-rich C–O–H–N fluids at 5.5–7.8 GPa. Earth Planet Sci Lett. 2017; 60: 234-243.
[36]
Zhang C., Duan Z.. A model for C–O–H fluid in the Earth’s mantle. Geochim Cosmochim Acta. 2009; 73(7): 2089-2102.
[37]
Frezzotti M.L., Huizenga J.M., Compagnoni R., Selverstone J.. Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. Geochim Cosmochim Acta. 2014; 143: 68-86.
[38]
Sverjensky D.A., Huang F.. Diamond formation due to a pH drop during fluid–rock interactions. Nat Commun. 2015; 6: 8702.
[39]
Sobolev N.V., Sobolev A.V., Tomilenko A.A., Kuz’min D.V., Grakhanov S.A., Batanova V.G., . Prospects of searching for diamondiferous kimberlites in the northeastern Siberian platform. Russ Geol Geophys. 2018; 59(10): 1385-1399.
[40]
Kamenetsky M.B., Sobolev A.V., Kamenetsky V.S., Maas R., Danyushevsky L.V., Thomas R., . Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology. 2004; 32(10): 845-848.
[41]
Sobolev N.V., Logvinova A.M., Efimova E.S.. Syngenetic phlogopite inclusions in kimberlites-hosted diamonds: implications for role of volatiles in diamond formation. Russ Geol Geophys. 2009; 50(12): 1234-1248.
[42]
Sverjensky D.A., Stagno V., Huang F.. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci. 2014; 7(12): 909-913.
[43]
Dolejš D.. Geochemistry: ions surprise in Earth’s deep fluids. Nature. 2016; 539(7629): 362-364.
Acknowledgements

Yuri Dublyansky and an anonymous reviewer provided helpful comments and suggestions that significantly improved this manuscript. We are indebted to Dr. Ho-Kwang (Dave) Mao for the invitation to participate in Deep Volatile, Energy & Developments Summit (DVEES) 2018. This work was supported by the Russian Science Foundation (RSF-14-17-00602P); the Russian Foundation for Basic Research (RFBR-18-05-00761); and a Russian Federation State Research Subsidy.

Compliance with ethics guidelines

Nikolay V. Sobolev, Anatoly A. Tomilenko, Taras A. Bul’bak, and Alla M. Logvinova declare that they have no conflict of interest or financial conflicts to disclose.

版权

2019 Chinese Academy of Engineering
PDF(1779 KB)

Accesses

Citation

Detail

段落导航
相关文章

/