
高温材料量热法的新进展
New Developments in the Calorimetry of High-Temperature Materials
[1] |
Levchenko A., Marchin L., Parlouer P.L., Navrotsky A.. The new high-temperature Setaram AlexSYS calorimeter and thermochemistry of α-CuMnO4. ITAS Bull. 2009; 2: 91-97.
|
[2] |
Navrotsky A.. Progress and new directions in calorimetry: a 2014 perspective. J Am Ceram. 2014; 97(11): 3349-3359.
|
[3] |
Shi Q., Boerio-Goates J., Woodfield B.F.. An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter. J Chem Thermodyn. 2011; 43(8): 1263-1269.
|
[4] |
Hong Q.J., Ushakov S.V., Navrotsky A., van de Walle A.. Combined computational and experimental investigation of the refractory properties of La2Zr2O7. Acta Mater. 2015; 84: 275-282.
|
[5] |
Zhang L., Solomon J.M., Asta M.D., Navrotsky A.. A combined calorimetric and computational study of the energetics of rare earth substituted UO2 systems. Acta Mater. 2015; 97: 191-198.
|
[6] |
Kapush D., Ushakov S.V., Navrotsky A., Hong Q., Liu H., van de Walle A.. A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000 °C using drop-n-catch calorimetry and first principles calculations. Acta Mater. 2017; 124: 204-209.
|
[7] |
Luo X., Zhou W., Ushakov S.V., Navrotsky A., Demkov A.A.. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys. 2009; 80(13): 134119
|
[8] |
O’Hare P.A.G.. Combustion calorimetry. In:
|
[9] |
Leonidov V.Y., O’Hare P.A.G.. Fluorine combustion calorimetry: progress in recent years and possibilities of further development. Pure Appl Chem. 1992; 64(1): 103-110.
|
[10] |
Kleppa O.J., Guo Q., Meschel S.V.. Recent work in high-temperature reaction calorimetry of intermetallic compounds and related phases. In:
|
[11] |
Colinet C., Pasturel A.. High-temperature solution calorimetry. In:
|
[12] |
Cordfunke E.H.P., Ouweltjes W.. Solution calorimetry for the determination of enthalpies of reaction of inorganic substances at 298.15 K. In:
|
[13] |
Westrum E.F.Jr.. Adiabatic calorimetric determination of phase behavior. Fluid Phase Equilib. 1986; 27: 221-231.
|
[14] |
Blandamer M.J., Cullis P.M., Gleeson P.T.. Three important calorimetric applications of a classic thermodynamic equation. Chem Soc Rev. 2003; 32(5): 264-267.
|
[15] |
Matsuo T.. Some new aspects of adiabatic calorimetry at low temperatures. Thermochim Acta. 1990; 163: 57-70.
|
[16] |
Bartolome J., Bartolome F.. Specific heat below 1 K. Some examples in magnetism. Phase Transit. 1997; 64(1–2): 57-86.
|
[17] |
Matsumoto Y., Nakatsuji S.. Relaxation calorimetry at very low temperatures for systems with internal relaxation. Rev Sci Instrum. 2018; 89(3): 033908
|
[18] |
Cooke D.W., Michel K.J., Hellman F.. Thermodynamic measurements of submilligram bulk samples using a membrane-based “calorimeter on a chip”. Rev Sci Instrum. 2008; 79(5): 053902
|
[19] |
Queen D.R., Hellman F.. Thin film nanocalorimeter for heat capacity measurements of 30 nm films. Rev Sci Instrum. 2009; 80(6): 063901
|
[20] |
Navrotsky A., Dorogova M., Hellman F., Cooke D.W., Zink B.L., Lesher C.E.,
|
[21] |
Dachs E., Benisek A.. A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics. 2011; 51(8): 460-464.
|
[22] |
Hohne G., Hemminger W., Flammersheim H.J.. Differential scanning calorimetry: an introduction for practitioners.
|
[23] |
Navrotsky A., Ushakov S.V.. Hot matters—experimental methods for high-temperature property measurement. Am Ceram Soc Bull. 2017; 96: 22-28.
|
[24] |
Ushakov S.V., Navrotsky A.. Direct measurements of fusion and phase transition enthalpies in lanthanum oxide. J Mater Res. 2011; 26(7): 845-847.
|
[25] |
Radha A.V., Ushakov S.V., Navrotsky A.. Thermochemistry of lanthanum zirconate pyrochlore. J Mater Res. 2009; 24(11): 3350-3357.
|
[26] |
Ushakov S.V., Navrotsky A.. Direct measurement of fusion enthalpy of LaAlO3 and comparison of energetics of melt, glass and amorphous thin films. J Am Ceram Soc. 2014; 97(5): 1589-1594.
|
[27] |
Ushakov S.V., Navrotsky A.. Experimental approaches to the thermodynamics of ceramics above 1500 °C. J Am Ceram Soc. 2012; 95(5): 1463-1482.
|
[28] |
Ushakov S.V., Shvarev A., Alexeev T., Kapush D., Navrotsky A.. Drop-and-catch (DnC) calorimetry using aerodynamic levitation and laser heating. J Am Ceram Soc. 2017; 100(2): 754-760.
|
[29] |
Shamblin J., Feygenson M., Neuefeind J., Tracy C.L., Zhang F., Finkeldei S.,
|
[30] |
Solomon J.M., Shamblin J., Lang M., Navrotsky A., Asta M.. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE = Ho, Y, Gd, Nd, La). Sci Rep. 2016; 6(1): 38772.
|
[31] |
Zietlow P., Beirau T., Mihailova B., Groat L.A., Chudy T., Shelyug A.,
|
[32] |
Finkeldei S., Kegler P., Kowalski P., Schreinemachers C., Brandt F., Bukaemskiy A.,
|
[33] |
Chung C.K., Shamblin J., O’Quinn E., Shelyug A., Gussev I., Lang M.K.,
|
[34] |
Maram P.S., Ushakov S.V., Weber R.J.K., Benmore C.J., Navrotsky A.. Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids—a thermodynamic perspective. Sci Rep. 2018; 8(1): 10658.
|
[35] |
Helean K.B., Ushakov S.V., Brown C.E., Navrotsky A., Lian J., Ewing R.C.,
|
[36] |
Lian J., Helean K.B., Kennedy B.J., Wang L.M., Navrotsky A., Ewing R.C.. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J Phys Chem B. 2006; 110(5): 2343-2350.
|
[37] |
Ushakov S.V., Navrotsky A., Tangeman J.A., Helean K.B.. Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates. J Am Ceram Soc. 2007; 90(4): 1171-1176.
|
[38] |
Navrotsky A., Kleppa O.J.. The thermodynamics of cation distributions in simple spinels. J Inorg Nucl Chem. 1967; 29(11): 2701-2714.
|
[39] |
Li Y., Kowalski P.M., Beridze G., Birnie A.R., Finkeldei S., Bosbach D.. Defect formation energies in A2B2O7 pyrochlores. Scr Mater. 2015; 107: 18-21.
|
/
〈 |
|
〉 |