高温材料量热法的新进展

工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 366-371.

PDF(1074 KB)
PDF(1074 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 366-371. DOI: 10.1016/j.eng.2019.03.003
观点述评
Views & Comments

高温材料量热法的新进展

作者信息 +

New Developments in the Calorimetry of High-Temperature Materials

Author information +
History +

引用本文

导出引用
. . Engineering. 2019, 5(3): 366-371 https://doi.org/10.1016/j.eng.2019.03.003

参考文献

[1]
Levchenko A., Marchin L., Parlouer P.L., Navrotsky A.. The new high-temperature Setaram AlexSYS calorimeter and thermochemistry of α-CuMnO4. ITAS Bull. 2009; 2: 91-97.
[2]
Navrotsky A.. Progress and new directions in calorimetry: a 2014 perspective. J Am Ceram. 2014; 97(11): 3349-3359.
[3]
Shi Q., Boerio-Goates J., Woodfield B.F.. An improved technique for accurate heat capacity measurements on powdered samples using a commercial relaxation calorimeter. J Chem Thermodyn. 2011; 43(8): 1263-1269.
[4]
Hong Q.J., Ushakov S.V., Navrotsky A., van de Walle A.. Combined computational and experimental investigation of the refractory properties of La2Zr2O7. Acta Mater. 2015; 84: 275-282.
[5]
Zhang L., Solomon J.M., Asta M.D., Navrotsky A.. A combined calorimetric and computational study of the energetics of rare earth substituted UO2 systems. Acta Mater. 2015; 97: 191-198.
[6]
Kapush D., Ushakov S.V., Navrotsky A., Hong Q., Liu H., van de Walle A.. A combined experimental and theoretical study of enthalpy of phase transition and fusion of yttria above 2000 °C using drop-n-catch calorimetry and first principles calculations. Acta Mater. 2017; 124: 204-209.
[7]
Luo X., Zhou W., Ushakov S.V., Navrotsky A., Demkov A.A.. Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys Rev B Condens Matter Mater Phys. 2009; 80(13): 134119
[8]
O’Hare P.A.G.. Combustion calorimetry. In: editor. Characterization of materials. New Jersey: John Wiley & Sons, Inc.; 2003. p. 373-383.
[9]
Leonidov V.Y., O’Hare P.A.G.. Fluorine combustion calorimetry: progress in recent years and possibilities of further development. Pure Appl Chem. 1992; 64(1): 103-110.
[10]
Kleppa O.J., Guo Q., Meschel S.V.. Recent work in high-temperature reaction calorimetry of intermetallic compounds and related phases. In: editor. Applications of thermodynamics in the synthesis and processing of materials. Pittsburgh: Minerals, Metals & Materials Society; 1995. p. 285-302.
[11]
Colinet C., Pasturel A.. High-temperature solution calorimetry. In: editor. Experimental thermodynamics. New Jersey: John Wiley & Sons, Inc.; 1994. p. 89-129.
[12]
Cordfunke E.H.P., Ouweltjes W.. Solution calorimetry for the determination of enthalpies of reaction of inorganic substances at 298.15 K. In: editor. Experimental thermodynamics. New Jersey: John Wiley & Sons, Inc.; 1994. p. 25-42.
[13]
Westrum E.F.Jr.. Adiabatic calorimetric determination of phase behavior. Fluid Phase Equilib. 1986; 27: 221-231.
[14]
Blandamer M.J., Cullis P.M., Gleeson P.T.. Three important calorimetric applications of a classic thermodynamic equation. Chem Soc Rev. 2003; 32(5): 264-267.
[15]
Matsuo T.. Some new aspects of adiabatic calorimetry at low temperatures. Thermochim Acta. 1990; 163: 57-70.
[16]
Bartolome J., Bartolome F.. Specific heat below 1 K. Some examples in magnetism. Phase Transit. 1997; 64(1–2): 57-86.
[17]
Matsumoto Y., Nakatsuji S.. Relaxation calorimetry at very low temperatures for systems with internal relaxation. Rev Sci Instrum. 2018; 89(3): 033908
[18]
Cooke D.W., Michel K.J., Hellman F.. Thermodynamic measurements of submilligram bulk samples using a membrane-based “calorimeter on a chip”. Rev Sci Instrum. 2008; 79(5): 053902
[19]
Queen D.R., Hellman F.. Thin film nanocalorimeter for heat capacity measurements of 30 nm films. Rev Sci Instrum. 2009; 80(6): 063901
[20]
Navrotsky A., Dorogova M., Hellman F., Cooke D.W., Zink B.L., Lesher C.E., . Application of calorimetry on a chip to high-pressure materials. Proc Natl Acad Sci USA. 2007; 104(22): 9187-9191.
[21]
Dachs E., Benisek A.. A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics. 2011; 51(8): 460-464.
[22]
Hohne G., Hemminger W., Flammersheim H.J.. Differential scanning calorimetry: an introduction for practitioners.
[23]
Navrotsky A., Ushakov S.V.. Hot matters—experimental methods for high-temperature property measurement. Am Ceram Soc Bull. 2017; 96: 22-28.
[24]
Ushakov S.V., Navrotsky A.. Direct measurements of fusion and phase transition enthalpies in lanthanum oxide. J Mater Res. 2011; 26(7): 845-847.
[25]
Radha A.V., Ushakov S.V., Navrotsky A.. Thermochemistry of lanthanum zirconate pyrochlore. J Mater Res. 2009; 24(11): 3350-3357.
[26]
Ushakov S.V., Navrotsky A.. Direct measurement of fusion enthalpy of LaAlO3 and comparison of energetics of melt, glass and amorphous thin films. J Am Ceram Soc. 2014; 97(5): 1589-1594.
[27]
Ushakov S.V., Navrotsky A.. Experimental approaches to the thermodynamics of ceramics above 1500 °C. J Am Ceram Soc. 2012; 95(5): 1463-1482.
[28]
Ushakov S.V., Shvarev A., Alexeev T., Kapush D., Navrotsky A.. Drop-and-catch (DnC) calorimetry using aerodynamic levitation and laser heating. J Am Ceram Soc. 2017; 100(2): 754-760.
[29]
Shamblin J., Feygenson M., Neuefeind J., Tracy C.L., Zhang F., Finkeldei S., . Probing disorder in isometric pyrochlore and related complex oxides. Nat Mater. 2016; 15(5): 507-511.
[30]
Solomon J.M., Shamblin J., Lang M., Navrotsky A., Asta M.. Chemical ordering in substituted fluorite oxides: a computational investigation of Ho2Zr2O7 and RE2Th2O7 (RE = Ho, Y, Gd, Nd, La). Sci Rep. 2016; 6(1): 38772.
[31]
Zietlow P., Beirau T., Mihailova B., Groat L.A., Chudy T., Shelyug A., . Thermal annealing of natural, radiation-damaged pyrochlore. Z Kristallogr. 2016; 232: 1-3.
[32]
Finkeldei S., Kegler P., Kowalski P., Schreinemachers C., Brandt F., Bukaemskiy A., . Composition dependent order-disorder transition in NdxZr1-xO2–0.5x pyrochlores: a combined structural, calorimetric and ab initio modeling study. Acta Mater. 2017; 125: 166-176.
[33]
Chung C.K., Shamblin J., O’Quinn E., Shelyug A., Gussev I., Lang M.K., . Thermodynamic and structural evolution of Dy2Ti2O7 pyrochlore after swift heavy ion irradiation. Acta Mater. 2018; 145: 227-234.
[34]
Maram P.S., Ushakov S.V., Weber R.J.K., Benmore C.J., Navrotsky A.. Probing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids—a thermodynamic perspective. Sci Rep. 2018; 8(1): 10658.
[35]
Helean K.B., Ushakov S.V., Brown C.E., Navrotsky A., Lian J., Ewing R.C., . Formation enthalpies of rare earth titanate pyrochlores. J Solid State Chem. 2004; 177(6): 1858-1866.
[36]
Lian J., Helean K.B., Kennedy B.J., Wang L.M., Navrotsky A., Ewing R.C.. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J Phys Chem B. 2006; 110(5): 2343-2350.
[37]
Ushakov S.V., Navrotsky A., Tangeman J.A., Helean K.B.. Energetics of defect fluorite and pyrochlore phases in lanthanum and gadolinium hafnates. J Am Ceram Soc. 2007; 90(4): 1171-1176.
[38]
Navrotsky A., Kleppa O.J.. The thermodynamics of cation distributions in simple spinels. J Inorg Nucl Chem. 1967; 29(11): 2701-2714.
[39]
Li Y., Kowalski P.M., Beridze G., Birnie A.R., Finkeldei S., Bosbach D.. Defect formation energies in A2B2O7 pyrochlores. Scr Mater. 2015; 107: 18-21.

Acknowledgements

The work reviewed here received support over many years from the US Department of Energy and the National Science Foundation, United States. Specifically, the work on pyrochlores was funded by the Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences (DE-SC0001089), while that on ultra-high-temperature calorimetry was supported by the National Science Foundation DMR (1506229 and 1835848).

版权

2019 THE AUTHOR
PDF(1074 KB)

Accesses

Citation

Detail

段落导航
相关文章

/