
深碳观测计划——对地球内部碳的十年探索
The Deep Carbon Observatory: A Ten-Year Quest to Study Carbon in Earth
[1] |
Hazen R.M., Schiffries C.. Why deep carbon?. Rev Mineral Geochem. 2013; 75: 1-6.
|
[2] |
In:
|
[3] |
Santoro M., Gorelli F.A., Bini R., Haines J., Cambon O., Levelut C.,
|
[4] |
Santoro M., Gorelli F.A., Bini R., Salamat A., Garbarino G., Levelut C.,
|
[5] |
Boulard E., Gloter A., Corgne A., Antonangeli D., Auzende A.L., Perrillat J.P.,
|
[6] |
Boulard E., Pan D., Galli G., Liu Z., Mao W.L.. Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun. 2015; 6(6311): 6311.
|
[7] |
Cerantola V., Bykova E., Kupenko I., Merlini M., Ismailova L., McCammon C.,
|
[8] |
Liu J., Lin J.F., Prakapenka V.B.. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep. 2015; 5(7640): 7640.
|
[9] |
Lobanov S.S., Dong X., Martirosyan N.S., Samtsevich A.I., Stevanovic V., Gavryushkin P.N.,
|
[10] |
Merlini M., Cerantola V., Gatta G.D., Gemmi M., Hanfland M., Kupenko I.,
|
[11] |
Merlini M., Crichton W.A., Hanfland M., Gemmi M., Müller H., Kupenko I.,
|
[12] |
Dorfman S., Badro J., Nabiei F., Prakapenka V.B., Cantoni M., Gillet P.. Carbonate stability in the reduced lower mantle. Earth Planet Sci Lett. 2018; 489: 84-91.
|
[13] |
Fu S., Yang J., Lin J.F.. Abnormal elasticity of single-crystal magnesiosiderite across the spin transition in Earth’s lower mantle. Phys Rev Lett. 2017; 118(3): 036402.
|
[14] |
Wood B., Li J., Shahar A.. Carbon in the core: its influence on the properties of core and mantle. Rev Mineral Geochem. 2013; 75: 231-250.
|
[15] |
Shahar A., Schauble E.A., Caracas R., Gleason A.E., Reagan M.M., Xiao Y.,
|
[16] |
Chen B., Li Z., Zhang D., Liu J., Hu M.Y., Zhao J.,
|
[17] |
Dasgupta R.. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem. 2013; 75: 183-229.
|
[18] |
Ni H., Keppler H.. Carbon in silicate melts. Rev Mineral Geochem. 2013; 75: 251-287.
|
[19] |
Dasgupta R., Hirschmann M.. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett. 2010; 298(1–2): 1-13.
|
[20] |
Thomson A.R., Walter M.J., Kohn S.C., Brooker R.A.. Slab melting as a barrier to deep carbon subduction. Nature. 2016; 529(7584): 76-79.
|
[21] |
Poli S.. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat Geosci. 2015; 8(8): 633-636.
|
[22] |
Pan D., Spanu L., Harrison B., Sverjensky D.A., Galli G.. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA. 2013; 110(17): 6646-6650.
|
[23] |
Facq S., Daniel I., Sverjensky D.. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions. Geochim Cosmochim Acta. 2014; 132: 375-390.
|
[24] |
Sverjensky D., Harrison B., Azzolini D.. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C. Geochim Cosmochim Acta. 2014; 129: 125-145.
|
[25] |
Sverjensky D., Stagno V., Huang F.. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat Geosci. 2014; 7(12): 909-913.
|
[26] |
Sverjensky D.A., Huang F.. Diamond formation due to a pH drop during fluid-rock interactions. Nat Commun. 2015; 6(8702): 8702.
|
[27] |
Galvez M.E., Connolly J.A., Manning C.E.. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature. 2016; 539(7629): 420-424.
|
[28] |
Dolejš D.. Geochemistry: ions surprise in Earth’s deep fluids. Nature. 2016; 539(7629): 362-364.
|
[29] |
Shirey S., Cartigny P., Frost D., Keshav S., Nestola F., Pearson G.,
|
[30] |
Smith E.M., Shirey S.B., Nestola F., Bullock E.S., Wang J., Richardson S.H.,
|
[31] |
Weiss Y., McNeill J., Pearson D.G., Nowell G.M., Ottley C.J.. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature. 2015; 524(7565): 339-342.
|
[32] |
Pearson D.G., Brenker F.E., Nestola F., McNeill J., Nasdala L., Hutchison M.T.,
|
[33] |
Nestola F., Korolev N., Kopylova M., Rotiroti N., Pearson D.G., Pamato M.G.,
|
[34] |
Smith E.M., Shirey S.B., Richardson S.H., Nestola F., Bullock E.S., Wang J.,
|
[35] |
de Moor J.M., Aiuppa A., Avard G., Wehrmann H., Dunbar N., Muller C.,
|
[36] |
Allard P., Aiuppa A., Bani P., Métrich N., Bertagnini A., Gauthier P.J.,
|
[37] |
Foley S.F., Fischer T.P.. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat Geosci. 2017; 10(12): 897-902.
|
[38] |
Lee H., Muirhead J.D., Fischer T.P., Ebinger C.J., Kattenhorn S.A., Sharp Z.D.,
|
[39] |
Hunt J.A., Zafu A., Mather T.A., Pyle D.M., Barry P.H.. Spatially variable CO2 degassing in the Main Ethiopian Rift: implications for magma storage, volatile transport and rift-related emissions. Geochem Geophys Geosyst. 2017; 18(10): 3714-3737.
|
[40] |
Brune S., Williams S.E., Müller R.D.. Potential links between continental rifting, CO2 degassing and climate change through time. Nat Geosci. 2017; 10(12): 941-946.
|
[41] |
Le Voyer M., Kelley K.A., Cottrell E., Hauri E.H.. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat Commun. 2017; 8: 14062.
|
[42] |
Aiuppa A., Fischer T., Plank T., Robidoux P., Di Napoli R.. Along-arc, inter-arc and arc-to-arc variations in volcanic gas CO2/ST ratios reveal dual source of carbon in arc volcanism. Earth Sci Rev. 2017; 168: 24-47.
|
[43] |
Mason E., Edmonds M., Turchyn A.V.. Remobilization of crustal carbon may dominate volcanic arc emissions. Science. 2017; 357(6348): 290-294.
|
[44] |
Kelemen P.B., Manning C.E.. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc Natl Acad Sci USA. 2015; 112(30): E3997-E4006.
|
[45] |
Johansson L., Zahirovic S., Müller R.D.. The interplay between the eruption and weathering of Large Igneous Provinces and the deep-time carbon cycle. Geophys Res Lett. 2018; 45(11): 5380-5389.
|
[46] |
Pall J., Zahirovic S., Doss S., Hassan R., Matthews K.J., Cannon J.,
|
[47] |
Müller R.D., Dutkiewicz A.. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci Adv. 2018; 4(2): q0500.
|
[48] |
Keller T., Katz R.. The role of volatiles in reactive melt transport in the asthenosphere. J Petrol. 2016; 57(6): 1073-1108.
|
[49] |
Keller T., Katz R., Hirschmann M.. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet Sci Lett. 2017; 464: 55-68.
|
[50] |
Young E.D., Rumble D.III, Freedman P., Mills M.. A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int J Mass Spectrom. 2016; 401: 1-10.
|
[51] |
Young E.D., Kohl I.E., Sherwood Lollar B., Etiope G., Rumble D., Li S.,
|
[52] |
Wang D.T., Reeves E.P., McDermott J.M., Seewald J.S., Ono S.. Clumped isotopologue constraints on the origin of methane at seafloor hot springs. Geochim Cosmochim Acta. 2018; 223: 141-158.
|
[53] |
Ono S., Wang D.T., Gruen D.S., Sherwood Lollar B., Zahniser M.S., McManus B.J.,
|
[54] |
Wang D.T., Gruen D.S., Sherwood Lollar B., Hinrichs K.U., Stewart L.C., Holden J.F.,
|
[55] |
Le T., Striolo A., Turner C.H., Cole D.R.. Confinement effects on carbon dioxide methanation: a novel mechanism for abiotic methane formation. Sci Rep. 2017; 7(1): 9021.
|
[56] |
McCollom T.M.. Abiotic methane formation during experimental serpentinization of olivine. Proc Natl Acad Sci USA. 2016; 113(49): 13965-13970.
|
[57] |
Etiope G., Ifandi E., Nazzari M., Procesi M., Tsikouras B., Ventura G.,
|
[58] |
Früh-Green G.L., Orcutt B.N., Green S.L., Cotterill C., Morgan S., Akizawa N.,
|
[59] |
Ménez B., Pisapia C., Andreani M., Jamme F., Vanbellingen Q.P., Brunelle A.,
|
[60] |
Holland G., Sherwood Lollar B., Li L., Lacrampe-Couloume G., Slater G.F., Ballentine C.J.. Deep fracture fluids isolated in the crust since the Precambrian era. Nature. 2013; 497(7449): 357-360.
|
[61] |
Sherwood Lollar B., Onstott T.C., Lacrampe-Couloume G., Ballentine C.J.. The contribution of the Precambrian continental lithosphere to global H2 production. Nature. 2014; 516(7531): 379-382.
|
[62] |
Waite J.H., Glein C.R., Perryman R.S., Teolis B.D., Magee B.A., Miller G.,
|
[63] |
Postberg F., Khawaja N., Abel B., Choblet G., Glein C.R., Gudipati M.S.,
|
[64] |
Inagaki F., Hinrichs K.U., Kubo Y., Bowles M.W., Heuer V.B., Hong W.L.,
|
[65] |
Trembath-Reichert E., Morono Y., Ijiri A., Hoshino T., Dawson K.S., Inagaki F.,
|
[66] |
D’Hondt S., Inagaki F., Zarikian C., Abrams L.J., Dubois N., Engelhardt T.,
|
[67] |
Starnawski P., Bataillon T., Ettema T.J.G., Jochum L.M., Schreiber L., Chen X.,
|
[68] |
Reveillaud J., Reddington E., McDermott J., Algar C., Meyer J.L., Sylva S.,
|
[69] |
He Y., Li M., Perumal V., Feng X., Fang J., Xie J.,
|
[70] |
Anderson R.E., Reveillaud J., Reddington E., Delmont T.O., Eren A.M., McDermott J.M.,
|
[71] |
Ruff S.E., Biddle J.F., Teske A.P., Knittel K., Boetius A., Ramette A.. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA. 2015; 112(13): 4015-4020.
|
[72] |
Magnabosco C., Lin L.H., Dong H., Bomberg M., Ghiorse W., Stan-Lotter H.,
|
[73] |
Lau M.C.Y., Kieft T.L., Kuloyo O., Linage-Alvarez B., van Heerden E., Lindsay M.R.,
|
[74] |
Borgonie G., García-Moyano A., Litthauer D., Bert W., Bester A., van Heerden E.,
|
[75] |
Borgonie G., Linage-Alvarez B., Ojo A.O., Mundle S.O.C., Freese L.B., Van Rooyen C.,
|
[76] |
Daly R.A., Borton M.A., Wilkins M.J., Hoyt D.W., Kountz D.J., Wolfe R.A.,
|
[77] |
Smith A., Fisk M., Thurber A., Flores G.E., Mason O., Popa R.,
|
[78] |
Bourges A.C., Torres Montaguth O.E., Ghosh A., Tadesse W.M., Declerck N., Aertsen A.,
|
[79] |
Gao M., Harish B., Berghaus M., Seymen R., Arns L., McCallum S.A.,
|
/
〈 |
|
〉 |