数据驱动的加工过程异常诊断

Y.C. Liang, Y.C. Liang, W.D. Li, X. Lu

工程(英文) ›› 2019, Vol. 5 ›› Issue (4) : 646-652.

PDF(1189 KB)
PDF(1189 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (4) : 646-652. DOI: 10.1016/j.eng.2019.03.012
研究论文
RESEARCH ARTICLE

数据驱动的加工过程异常诊断

作者信息 +

Data-Driven Anomaly Diagnosis for Machining Processes

Author information +
History +

摘要

为了在计算机数控(CNC)加工过程中实现零缺陷生产,开发有效的异常检测诊断系统势在必行。然而,由于加工过程中机床和工装的动态条件限制,目前在工业生产中采用的相关诊断系统所能发挥的作用往往非常有限。为了解决这个问题,本文提出了一种全新的异常数据驱动的诊断系统。在该系统之中,我们持续收集随动态加工过程而产生的状态监测功率数据,并以此支持在线诊断分析。为了便于分析,我们设计了预处理机制对所监视的数据进行去噪、标准化以及校准。随后我们即从监控数据中提取关键特征,并定义阈值以识别异常。考虑到加工过程中机床和工装的动态条件,用于识别异常的阈值可以调整。我们还可以基于历史数据利用果蝇优化(FFO)算法优化阈值,以实现更准确的检测。通过实践验证,我们证明了该系统在工业应用中的有效性和巨大前景。

Abstract

To achieve zero-defect production during computer numerical control (CNC) machining processes, it is imperative to develop effective diagnosis systems to detect anomalies efficiently. However, due to the dynamic conditions of the machine and tooling during machining processes, the relevant diagnosis systems currently adopted in industries are incompetent. To address this issue, this paper presents a novel data-driven diagnosis system for anomalies. In this system, power data for condition monitoring are continuously collected during dynamic machining processes to support online diagnosis analysis. To facilitate the analysis, preprocessing mechanisms have been designed to denoise, normalize, and align the monitored data. Important features are extracted from the monitored data and thresholds are defined to identify anomalies. Considering the dynamic conditions of the machine and tooling during machining processes, the thresholds used to identify anomalies can vary. Based on historical data, the values of thresholds are optimized using a fruit fly optimization (FFO) algorithm to achieve more accurate detection. Practical case studies were used to validate the system, thereby demonstrating the potential and effectiveness of the system for industrial applications.

关键词

计算机数控加工 / 异常检测 / 果蝇优化算法 / 数据驱动方法

Keywords

Computer numerical control machining / Anomaly detection / Fruit fly optimization algorithm / Data-driven method

引用本文

导出引用
Y.C. Liang, Y.C. Liang, W.D. Li. 数据驱动的加工过程异常诊断. Engineering. 2019, 5(4): 646-652 https://doi.org/10.1016/j.eng.2019.03.012

参考文献

[1]
Bayar N, Darmoul S, Hajri-Gabouj S, Pierreval H. Fault detection, diagnosis and recovery using artificial immune systems: a review. Eng Appl Artif Intell 2015;46:43–57.
[2]
Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN. A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput Chem Eng 2003;27(3):293–311.
[3]
Aydin I, Karakose M, Akin E. Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Syst Appl 2010;37 (7):5285–94.
[4]
Yang H, Li T, Hu X, Wang F, Zou Y. A survey of artificial immune system based intrusion detection. Sci World J 2014;2014:156790.
[5]
Wang S, Liang YC, Li WD, Cai XT. Big data enabled intelligent immune system for energy efficient manufacturing management. J Clean Prod 2018;195:507–20.
[6]
Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, et al. Cloud-enabled prognosis for manufacturing. CIRP Ann 2015;64(2):749–72.
[7]
Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D. Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech Syst Signal Process 2014;42(1–2):314–34.
[8]
Hu G, Li H, Xia Y, Luo L. A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis. Comput Ind 2018;100:287–96.
[9]
Tian Y, Fu M, Wu F. Steel plates fault diagnosis on the basis of support vector machines. Neurocomputing 2015;151:296–303.
[10]
Zheng J, Pan H, Cheng J. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech Syst Signal Process 2017;85:746–59.
[11]
Wu H, Zhao J. Deep convolutional neural network model based chemical process fault diagnosis. Comput Chem Eng 2018;115:185–97.
[12]
Madhusudana C, Kumar H, Narendranath S. Fault diagnosis of face milling tool using decision tree and sound signal. Materials Today Proc 2018;5 (5):12035–44.
[13]
Lu F, Jiang J, Huang J, Qiu X. Dual reduced kernel extreme learning machine for aero-engine fault diagnosis. Aerosp Sci Technol 2017;71:742–50.
[14]
Wen L, Li X, Gao L, Zhang Y. A new convolutional neural network-based datadriven fault diagnosis method. IEEE Trans Ind Electron 2018;65(7):5990–8.
[15]
Wen L, Gao L, Li X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans Syst Man Cybern Syst 2019;49(1):136–44.
[16]
Wen L, Li X, Gao L. A new two-level hierarchical diagnosis network based on convolutional neural network. IEEE Trans Instrum Meas. Forthcoming 2019.
[17]
García S, Luengo J, Herrera F. Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl Base Syst 2016;98:1–29.
[18]
Pan S, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2010;22(10):1345–59.
[19]
Liu Z, Guo Y, Sealy M, Liu Z. Energy consumption and process sustainability of hard milling with tool wear progression. J Mater Process Technol 2016;229:305–12.
[20]
Sealy M, Liu Z, Zhang D, Guo Y, Liu Z. Energy consumption and modeling in precision hard milling. J Clean Prod 2016;135:1591–601.
[21]
Stoney R, Donohoe B, Geraghty D, O’Donnell G. The development of surface acoustic wave sensors (SAWs) for process monitoring. Procedia CIRP 2012;1:569–74.
[22]
García Plaza E, Núñez López PJ. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech Syst Signal Process 2018;98:902–19.
[23]
Feng Z, Zuo M, Chu F. Application of regularization dimension to gear damage assessment. Mech Syst Signal Process 2010;24(4):1081–98.
[24]
Rimpault X, Bitar-Nehme E, Balazinski M, Mayer J. Online monitoring and failure detection of capacitive displacement sensor in a Capball device using fractal analysis. Measurement 2018;118:23–8.
[25]
Xia M, Li T, Xu L, Liu L, De Silva C. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans Mechatron 2018;23(1):101–10.
[26]
Zheng X, Wang L, Wang S. A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem. Knowl Base Syst 2014;57:95–103.
[27]
Liang Y, Lu X, Li W, Wang S. Cyber physical system and big data enabled energy efficient machining optimisation. J Clean Prod 2018;187:46–62.
[28]
Powers D. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J Mach Learn Technol 2011;2 (1):37–63.
[29]
Du T, Ke X, Liao J, Shen Y. DSLC-FOA: improved fruit fly optimization algorithm for application to structural engineering design optimization problems. Appl Math Model 2018;55:314–39.
PDF(1189 KB)

Accesses

Citation

Detail

段落导航
相关文章

/