快速球磨法高效实现各向同性气雾化MnAl 粉的纳米化制备

J. Rial, E.M. Palmero, A. Bollero

工程(英文) ›› 2020, Vol. 6 ›› Issue (2) : 172-176.

PDF(786 KB)
PDF(786 KB)
工程(英文) ›› 2020, Vol. 6 ›› Issue (2) : 172-176. DOI: 10.1016/j.eng.2019.03.013
研究论文
Article

快速球磨法高效实现各向同性气雾化MnAl 粉的纳米化制备

作者信息 +

Efficient Nanostructuring of Isotropic Gas-Atomized MnAl Powder by Rapid Milling (30 s)

Author information +
History +

摘要

为了提高永磁体性能尤其是矫顽力,对气雾化MnAl粉末首次进行了30 s短时间球磨。结果表明,如此短的处理时间加上随后的退火可以高效地得到纳米结构和可控的相变。球磨过程中产生的微应变引起的缺陷与退火过程中形成的β相共同起到钉扎中心的作用,从而提高了矫顽力。研究表明,为了在磁化强度和矫顽力之间达到折中,在铁磁性τ-MnAl相和β相的形成之间找到一个平衡是很重要的。球磨(30 s)和退火后获得的矫顽力高达4.2 kOe (1 Oe = 79.6 A·m–1),与早期文献报道的球磨时间超过20 h时的矫顽力相当。球磨后粉末的退火温度降低了75 ℃,矫顽力提高了2.5倍,而退火后的气雾化材料的剩磁基本保持不变,为合成各向同性的MnAl基粉末开辟了一条新的途径。

Abstract

An unprecedentedly short milling time of 30 s was applied to gas-atomized MnAl powder in order to develop permanent magnet properties and, in particular, coercivity. It is shown that such a short processing time followed by annealing results in efficient nanostructuring and controlled phase transformation. The defects resulting from the microstrain induced during milling, together with the creation of the β-phase during post-annealing, act as pinning centers resulting in an enhanced coercivity. This study shows the importance of finding a balance between the formation of the ferromagnetic τ-MnAl phase and the β-phase in order to establish a compromise between magnetization and coercivity. A coercivity as high as 4.2 kOe (1 Oe = 79.6 A·m-1 ) was obtained after milling (30 s) and annealing, which is comparable to values previously reported in the literature for milling times exceeding 20 h. This reduction of the postannealing temperature by 75 ℃ for the as-milled powder and a 2.5-fold increase in coercivity, while maintaining practically unchanged the remanence of the annealed gas-atomized material, opens a new path for the synthesis of isotropic MnAl-based powder.

关键词

永磁体 / 纳米结构 / 相变 / MnAl / 气雾化 / 球磨法

Keywords

Permanent magnets (PMs) / Nanostructuring / Phase transformation / MnAl / Gas atomization / Ball milling

引用本文

导出引用
J. Rial, E.M. Palmero, A. Bollero. 快速球磨法高效实现各向同性气雾化MnAl 粉的纳米化制备. Engineering. 2020, 6(2): 172-176 https://doi.org/10.1016/j.eng.2019.03.013

参考文献

[1]
Coey JMD. Hard magnetic materials: a perspective. IEEE Trans Magn 2011;47 (12):4671–81.
[2]
Lewis LH, Jiménez-Villacorta F. Perspectives on permanent magnetic materials for energy conversion and power generation. Metall Mater Trans A 2013;44 (S1):2–20.
[3]
Gutfleisch O, Willard MA, Brück E, Chen CH, Sankar SG, Liu JP. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 2011;23(7):821–42.
[4]
Koch AJJ, Hokkeling P, Steeg MG, de Vos KJ. New material for permanent magnets on a base of Mn and Al. J Appl Phys 1960;31(5):S75–7.
[5]
Ko¯no H. On the ferromagnetic phase in manganese–aluminum system. J Phys Soc Jpn 1958;13(12):1444–51.
[6]
Jiménez-Villacorta F, Marion JL, Oldham JT, Daniil M, Willard MA, Lewis LH. Magnetism-structure correlations during the e?s transformation in rapidlysolidified MnAl nanostructured alloys. Metals 2014;4(1):8–19.
[7]
Zeng Q, Baker I, Cui JB, Yan ZC. Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials. J Magn Magn Mater 2007;308 (2):214–26.
[8]
Chatuverdi A, Yaqub R, Baker I. Microstructure and magnetic properties of bulk nanocrystalline MnAl. Metals 2014;4(1):20–7.
[9]
Marshall LG, McDonald IJ, Lewis LH. Quantification of the strain-induced promotion of s-MnAl via cryogenic milling. J Magn Magn Mater 2016;404:215–20.
[10]
Jian H, Skokov KP, Gutfleisch O. Microstructure and magnetic properties of Mn–A1–C alloy powders prepared by ball milling. J Alloys Compd 2015;622:524–8.
[11]
Bittner F, Freudenberger J, Schultz L, Woodcock TG. The impact of dislocations on coercivity in L10-MnAl. J Alloys Compd 2017;704:528–36.
[12]
Lee JG, Wang XL, Zhang ZD, Choi CJ. Effect of mechanical milling and heat treatment on the structure and magnetic properties of gas atomized Mn–Al alloy powders. Thin Solid Films 2011;519(23):8312–6.
[13]
Law JY, Rial J, Villanueva M, López N, Camarero J, Marshall LG, et al. Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles. J Alloys Compd 2017;712:373–8.
[14]
Rial J, Švec P, Palmero EM, Camarero J, Švec P Sr, Bollero A. Severe tuning of permanent magnet properties in gas-atomized MnAl powder by controlled nanostructuring and phase transformation. Acta Mater 2018;157:42–52.
[15]
Palmero EM, Rial J, de Vicente J, Camarero J, Skårman B, Vidarsson H, et al. Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies. Sci Technol Adv Mater 2018;19(1):465–73.
PDF(786 KB)

Accesses

Citation

Detail

段落导航
相关文章

/