
基于自组织映射的增材制造中数据驱动式微观组织和显微硬度设计
Zhengtao Gan, Hengyang Li, Sarah J. Wolff, Jennifer L. Bennett, Gregory Hyatt, Gregory J. Wagner, Jian Cao, Wing Kam Liu
工程(英文) ›› 2019, Vol. 5 ›› Issue (4) : 730-735.
基于自组织映射的增材制造中数据驱动式微观组织和显微硬度设计
Data-Driven Microstructure and Microhardness Design in Additive Manufacturing Using a Self-Organizing Map
为了在镍基高温合金的增材制造(AM)中设计微观组织和显微硬度,本研究提出了一种新的数据驱动方法,该方法结合了物理模型、实验测量和数据挖掘方法。该模拟基于计算热流体动力学(CtFD)模型,可以获得热行为、凝固参数(如冷却速度)和凝固层的稀释率。根据计算出的热信息, 可利用经过充分测试的力学模型估算枝晶臂间距和显微硬度。通过实验测定试样的微观结构和显微硬度,与模拟值进行比较验证。为了实现过程-组织-性能(PSP)关系的可视化,模拟及实验数据集被输入到数据挖掘模型——自组织映射(SOM)中。在多目标下,工艺参数的设计窗口可以从可视化映射中得到。这种被提出的方法可用于AM和其他数据密集型工艺过程。过程、组织和性能之间的数据驱动联系可能会有利于在线过程监控控制,从而获得理想的微观组织和力学性能。
To design microstructure and microhardness in the additive manufacturing (AM) of nickel (Ni)-based superalloys, the present work develops a novel data-driven approach that combines physics-based models, experimental measurements, and a data-mining method. The simulation is based on a computational thermal-fluid dynamics (CtFD) model, which can obtain thermal behavior, solidification parameters such as cooling rate, and the dilution of solidified clad. Based on the computed thermal information, dendrite arm spacing and microhardness are estimated using well-tested mechanistic models. Experimental microstructure and microhardness are determined and compared with the simulated values for validation. To visualize process–structure–properties (PSP) linkages, the simulation and experimental datasets are input to a data-mining model—a self-organizing map (SOM). The design windows of the process parameters under multiple objectives can be obtained from the visualized maps. The proposed approaches can be utilized in AM and other data-intensive processes. Data-driven linkages between process, structure, and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties.
增材制造 / 数据科学 / 多重物理建模 / 自组织映射 / 微观结构 / 显微硬度 / 镍基高温合金
Additive manufacturing / Data science / Multiphysics modeling / Self-organizing map / Microstructure / Microhardness / Ni-based superalloy
[1] |
reneman CM, Brinson LC, Schadler LS, Natarajan B, Krein M, Wu K, et al. Stalking the materials genome: a data-driven approach to the virtual design of nanostructured polymers. Adv Funct Mater 2013;23(46):5746–52.
|
[2] |
cDowell DL, Kalidindi SR. The materials innovation ecosystem: a key enabler for the materials genome initiative. MRS Bull 2016;41(4):326–37.
|
[3] |
ain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1(1):011002.
|
[4] |
hompson SM, Bian L, Shamsaei N, Yadollahi A. An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 2015;8:36–62.
|
[5] |
avid SA, DebRoy T. Current issues and problems in welding science. Science 1992;257(5069):497–502.
|
[6] |
mith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, et al. Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support. Comput Mech 2016;57 (4):583–610.
|
[7] |
e X, Mazumder J. Transport phenomena during direct metal deposition. J Appl Phys 2007;101(5):053113.
|
[8] |
an Z, Yu G, He X, Li S. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int J Heat Mass Transfer 2017;104:28–38.
|
[9] |
an Z, Yu G, Li S, He X, Chen R, Zheng C, et al. A novel intelligent adaptive control of laser-based ground thermal test. Chin J Aeronaut 2016;29(4): 1018–26.
|
[10] |
Gan Z, Lian Y, Lin SE, Jones KK, Liu WK, Wagner GJ. Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of inconel 625. Integr Mater Manuf Innovation 2019;8(2):178–93.
|
[11] |
Wolff SJ, Lin S, Faierson EJ, Liu WK, Wagner GJ, Cao J. A framework to link localized cooling and properties of directed energy deposition (DED)- processed Ti–6Al–4V. Acta Mater 2017;132:106–17.
|
[12] |
Wolff S, Lee T, Faierson E, Ehmann K, Cao J. Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V. J Manuf Process 2016;24: 397–405.
|
[13] |
Popova E, Rodgers TM, Gong X, Cecen A, Madison JD, Kalidindi SR. Process-structure linkages using a data science approach: application to simulated additive manufacturing data. Integr Mater Manuf Innov 2017; 6(1):54–68.
|
[14] |
Li J, Jin R, Yu HZ. Integration of physically-based and data-driven approaches for thermal field prediction in additive manufacturing. Mater Des 2018; 139:473–85.
|
[15] |
Hu Z, Wang H, Thouless MD, Lu W. An approach of adaptive effective cycles to couple fretting wear and creep in finite-element modeling. Int J Solids Struct 2018;139–140:302–11.
|
[16] |
Salloum M, Johnson KL, Bishop JE, Aytac JM, Dagel D, Van Bloemen Waanders BG. Adaptive wavelet compression of large additive manufacturing experimental and simulation datasets. Comput Mech 2019;63(3):491–510.
|
[17] |
Kohonen T. The self-organizing map. Proc IEEE 1990;78(9):1464–80.
|
[18] |
Kohonen T. The self-organizing map. Neurocomputing 1998;21(1–3):1–6.
|
[19] |
Rauber A, Merkl D, Dittenbach M. The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans Neural Netw 2002;13(6):1331–41.
|
[20] |
Koishi M, Kowatari N, Figliuzzi B, Faessel M, Willot F, Jeulin D. Computational material design of filled rubbers using multi-objective design exploration. In: Proceedings of the 10th European Conference on Constitutive Models for Rubbers (ECCMR); 2017 Aug 28–31; Munich, German; 2017.
|
[21] |
Vesanto J, Alhoniemi E. Clustering of the self-organizing map. IEEE Trans Neural Netw 2000;11(3):586–600.
|
[22] |
Wolff SJ, Gan Z, Lin S, Bennett JL, Yan W, Hyatt G, et al. Experimentally validated predictions of thermal history and mechanical properties in laser-deposited Inconel 718 on carbon steel. Addit Manuf 2019;27: 540–51.
|
[23] |
Gan Z, Liu H, Li S, He X, Yu G. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron. Int J Heat Mass Transfer 2017;111:709–22.
|
[24] |
Gan Z, Yu G, He X, Li S. Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing. Int Commun Heat Mass Transf 2017;86:206–14.
|
[25] |
Chew YX, Song J, Bi G, Chen HC, Yao X, Zhang B, et al. Thermal and fluid field modelling for laser aided additive manufacturing. In: Proceedings of Lasers in Manufacturing Conference 2017; Munich, German; 2017.
|
[26] |
Hunt JD, editor. Solidification and casting of metals. London: Metal Society; 1979.
|
[27] |
DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 2018;92:112–224.
|
[28] |
Vesanto J, Himberg J, Alhoniemi E, Parhankangas J. Self-organizing map in Matlab: the SOM toolbox. In: Proceedings of the Matlab DSP Conference; 1999 Nov 16–17. Espoo, Finland; 1999. p. 35–40.
|
[29] |
Mukherjee T, Zuback JS, De A, DebRoy T. Printability of alloys for additive manufacturing. Sci Rep 2016;6(1):19717.
|
/
〈 |
|
〉 |