光学数字化全息技术——全光学机器学习展望

工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 363-365.

PDF(763 KB)
PDF(763 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (3) : 363-365. DOI: 10.1016/j.eng.2019.04.002
观点述评
Views & Comments

光学数字化全息技术——全光学机器学习展望

作者信息 +

Optically Digitalized Holography: A Perspective for All-Optical Machine Learning

Author information +
History +

引用本文

导出引用
. . Engineering. 2019, 5(3): 363-365 https://doi.org/10.1016/j.eng.2019.04.002

参考文献

[1]
Gabor D.. A new microscopic principle. Nature. 1948; 161(4098): 777.
[2]
Gabor D.. Microscopy by reconstructed wave-fronts. Proc R Soc Lond A Math Phys Sci. 1949; 197(1051): 454-487.
[3]
Powell R.L., Stetson K.A.. Interferometric vibration analysis by wavefront reconstruction. J Opt Soc Am. 1965; 55(12): 1593-1598.
[4]
Baum G., Stroke G.W.. Optical holographic three-dimensional ultrasonography. Science. 1975; 189(4207): 994-995.
[5]
Leith E.N., Upatnieks J.. Wavefront reconstruction with diffused illumination and three-dimensional objects. J Opt Soc Am. 1964; 54(11): 1295-1301.
[6]
Brown B.R., Lohmann A.W.. Complex spatial filtering with binary masks. Appl Opt. 1966; 5(6): 967-969.
[7]
Verbeeck J., Tian H., Schattschneider P.. Production and application of electron vortex beams. Nature. 2010; 467(7313): 301-304.
[8]
Zhang Z., You Z., Chu D.. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl. 2014; 3: e213.
[9]
Javidi B., Kuo C.J.. Joint transform image correlation using a binary spatial light modulator at the Fourier plane. Appl Opt. 1988; 27(4): 663-665.
[10]
Downing E., Hesselink L., Ralston J., Macfarlane R.. A three-color, solid-state, three-dimensional display. Science. 1996; 273(5279): 1185-1189.
[11]
Li J., Kamin S., Zheng G., Neubrech F., Zhang S., Liu N.. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv. 2018; 4(6): eaar6768.
[12]
Rosen J., Brooker G.. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat Photonics. 2008; 2(3): 190-195.
[13]
Heanue J.F., Bashaw M.C., Hesselink L.. Volume holographic storage and retrieval of digital data. Science. 1994; 265(5173): 749-752.
[14]
Grier D.G.. A revolution in optical manipulation. Nature. 2003; 424(6950): 810-816.
[15]
Ni X., Kildishev A.V., Shalaev V.M.. Metasurface holograms for visible light. Nat Commun. 2013; 4: 2807.
[16]
Li X., Zhang Q., Chen X., Gu M.. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci Rep. 2013; 3: 2819.
[17]
Li X., Ren H., Chen X., Liu J., Li Q., Li C., . Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun. 2015; 6: 6984.
[18]
Li X., Liu J., Cao L., Wang Y., Jin G., Gu M.. Light-control-light nanoplasmonic modulator for 3D micro-optical beam shaping. Adv Opt Mater. 2016; 4(1): 70-75.
[19]
Wang S., Ouyang X., Feng Z., Cao Y., Gu M., Li X.. Diffractive photonic applications mediated by laser reduced graphene oxides. Opto-Electron Adv. 2018; 1(2): 170002.
[20]
Zhang Q, Yu H, Barbiero M, Wang B, Gu M. Artificial neural networks enabled by nanophotonics. Light Sci Appl (In press).
[21]
Gu M., Zhang Q., Lamon S.. Nanomaterials for optical data storage. Nat Rev Mater. 2016; 1: 16070.
[22]
Gu M.. Advanced optical imaging theory.
[23]
Lin H., Jia B., Gu M.. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett. 2011; 36(3): 406-408.
[24]
Gu M., Lin H., Li X.. Parallel multiphoton microscopy with cylindrically polarized multifocal arrays. Opt Lett. 2013; 38(18): 3627-3630.
[25]
Ren H., Lin H., Li X., Gu M.. Three-dimensional parallel recording with a Debye diffraction-limited and aberration-free volumetric multifocal array. Opt Lett. 2014; 39(6): 1621-1624.
[26]
Gan Z., Cao Y., Evans R.A., Gu M.. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun. 2013; 4: 2061.
[27]
Yue Z., Xue G., Liu J., Wang Y., Gu M.. Nanometric holograms based on a topological insulator material. Nat Commun. 2017; 8: 15354.
[28]
Litjens G., Kooi T., Bejnordi B.E., Setio A.A.A., Ciompi F., Ghafoorian M., . A survey on deep learning in medical image analysis. Med Image Anal. 2017; 42: 60-88.
[29]
Butler K.T., Davies D.W., Cartwright H., Isayev O., Walsh A.. Machine learning for molecular and materials science. Nature. 2018; 559(7715): 547-555.
[30]
Hinton G., Deng L., Yu D., Dahl G.E., Mohamed A., Jaitly N., . Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag. 2012; 29(6): 82-97.
[31]
Psaltis D., Brady D., Gu X.G., Lin S.. Holography in artificial neural networks. Nature. 1990; 343(6256): 325-330.
[32]
Lin X., Rivenson Y., Yardimci N.T., Veli M., Luo Y., Jarrahi M., . All-optical machine learning using diffractive deep neural networks. Science. 2018; 361(6406): 1004-1008.
[33]
Goi E, Gu M. Laser printing of a nano-imager to perform full optical machine learning [presentation]. In: Conference on Lasers and Electro-Optics/Europe; 2019 Jun 23–27; Munich, Germany; 2019.
[34]
Li L., Ruan H., Liu C., Li Y., Shuang Y., Alù A., . Machine-learning reprogrammable metasurface imager. Nat Commun. 2019; 10(1): 1082.
[35]
Haas H., Yin L., Wang Y., Chen C.. What is LiFi?. J Lightwave Technol. 2015; 34(6): 1533-1544.
[36]
Shen Y., Harris N.C., Skirlo S., Prabhu M., Baehr-Jones T., Hochberg M., . Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017; 11: 441-446.

Acknowledgements

Min Gu acknowledges support from the Australian Research Council (ARC) through the Discovery Project (DP180102402). Xinyan Fang acknowledges support from a scholarship from the China Scholarship Council (201706190189). Haoran Ren acknowledges financial support from the Humboldt Research Fellowship from the Alexander von Humboldt Foundation.
PDF(763 KB)

Accesses

Citation

Detail

段落导航
相关文章

/