
情境感知智能产品的生物启发式设计
Ang Liu, Ivan Teo, Diandi Chen, Stephen Lu, Thorsten Wuest, Zhinan Zhang, Fei Tao
工程(英文) ›› 2019, Vol. 5 ›› Issue (4) : 637-645.
情境感知智能产品的生物启发式设计
Biologically Inspired Design of Context-Aware Smart Products
信息通信技术(ICT)和网络物理系统(CPS)的快速发展,为智能产品的日益普及铺平了道路。情境感知是衡量产品智能的一个重要角度。与人工制品不同,各种生物系统具有非凡的情境感知能力。生物启发式设计(BID)是最常用的设计策略之一。然而,迄今为止,很少有研究检查过情境感知智能产品的生物启发式设计。本文提出了一个结构化设计框架,用以支持情境感知智能产品的生物启发式设计。本文从产品设计的角度定义了情境感知的概念。该框架以功能-行为-结构理论(the situated function-behavior-structure ontology)为基础开发而成。本文规定了结构化设计过程,借助各种生物启发,支持不同的概念设计活动,如问题形成、结构重构、行为重构和功能重构。一些现有的设计方法和新兴的设计工具被纳入框架。本文提出了一个案例研究,展示了如何利用该框架重新设计机器人吸尘器,使其更具有情境感知能力。
The rapid development of information and communication technologies (ICTs) and cyber–physical systems (CPS) has paved the way for the increasing popularity of smart products. Context-awareness is an important facet of product smartness. Unlike artifacts, various bio-systems are naturally characterized by their extraordinary context-awareness. Biologically inspired design (BID) is one of the most commonly employed design strategies. However, few studies have examined the BID of context-aware smart products to date. This paper presents a structured design framework to support the BID of context-aware smart products. The meaning of context-awareness is defined from the perspective of product design. The framework is developed based on the theoretical foundations of the situated function–behavior–structure ontology. A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities, such as problem formulation, structure reformulation, behavior reformulation, and function reformulation. Some existing design methods and emerging design tools are incorporated into the framework. A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.
Design method / Biologically inspired design / Context-awareness / Intelligent design
[1] |
Abramovici M, Stark R, editors. Smart product engineering: proceedings of the 23rd CIRP Design Conference; 2013 Mar 11–13; Bochum, Germany. Berlin: Springer-Verlag; 2013.
|
[2] |
Adomavicius G, Tuzhilin A. Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B, editors. Recommender systems handbook. New York: Springer; 2015. p. 191–226.
|
[3] |
Ong SK, Zhu J. A novel maintenance system for equipment serviceability improvement. CIRP Ann 2013;62(1):39–42.
|
[4] |
Helms M, Vattam SS, Goel AK. Biologically inspired design: process and products. Des Stud 2009;30(5):606–22.
|
[5] |
Shu LH, Ueda K, Chiu I, Cheong H. Biologically inspired design. CIRP Ann 2011;60(2):673–93.
|
[6] |
Dourish P. What we talk about when we talk about context. Pers Ubiquitous Comput 2004;8(1):19–30.
|
[7] |
Gero JS, Kannengiesser U. The situated function–behaviour–structure framework. Des Stud 2004;25(4):373–91.
|
[8] |
Floreano D, Wood RJ. Science, technology and the future of small autonomous drones. Nature 2015;521(7553):460–6.
|
[9] |
Pahl G, Beitz W. Engineering design: a systematic approach. 3rd ed. London: Springer Science & Business Media; 2013.
|
[10] |
Xu Q, Jiao RJ, Yang X, Helander M, Khalid HM, Opperud A. An analytical Kano model for customer need analysis. Des Stud 2009;30(1):87–110.
|
[11] |
Holtzblatt K, Wendell JB, Wood S. Rapid contextual design: a how to guide to key techniques for user-centered design. San Francisco: Morgan Kaufmann Publishers; 2004.
|
[12] |
Stone RB, Wood KL. Development of a functional basis for design. J Mech Des 2000;122(4):359–70.
|
[13] |
Shu LH. A natural-language approach to biomimetic design. Artif Intell Eng Des Anal Manuf 2010;24(4):507–19.
|
[14] |
AskNature [Internet]. Missoula: The Biomimicry Institute; c2018 [cited 2019 Jun 17]. Available from: https://asknature.org/.
|
[15] |
Sass L, Oxman R. Materializing design: the implications of rapid prototyping in digital design. Des Stud 2006;27(3):325–55.
|
[16] |
Nee AYC, Ong SK, Chryssolouris G, Mourtzis D. Augmented reality applications in design and manufacturing. CIRP Ann 2012;61(2):657–79.
|
[17] |
Browning TR. Applying the design structure matrix to system decomposition and integration problems: a review and new directions. IEEE Trans Eng Manage 2001;48(3):292–306.
|
[18] |
Tao F, Sui F, Liu A, Qi Q, Zhang M, Song B, Nee AYC. Digital twin-driven product design framework. Int J Prod Res 2018:1–19.
|
[19] |
Zhou X, Slone JD, Rokas A, Berger SL, Liebig J, Ray A, et al. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLoS Genet 2012;8(8): e1002930.
|
[20] |
Liu A, Lu SCY. A crowdsourcing design framework for concept generation. CIRP Ann 2016;65(1):177–80.
|
[21] |
Daly IM, How MJ, Partridge JC, Temple SE, Marshall NJ, Cronin TW, et al. Dynamic polarization vision in mantis shrimps. Nat Commun 2016;7 (1):12140.
|
[22] |
Bee MA, Perrill SA, Owen PC. Male green frogs lower the pitch of acoustic signals in defense of territories: a possible dishonest signal of size? Behav Ecol 2000;11(2):169–77.
|
[23] |
Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, et al. Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci USA 2007;104(7):2460–4.
|
[24] |
Wager BR, Breed MD. Does honey bee sting alarm pheromone give orientation information to defensive bees? Ann Entomol Soc Am 2000;93 (6):1329–32.
|
/
〈 |
|
〉 |