提高在线模型识别平台效率的多目标最优实验设计框架

Arun Pankajakshan, Conor Waldron, Marco Quaglio, Asterios Gavriilidis, Federico Galvanin

工程(英文) ›› 2019, Vol. 5 ›› Issue (6) : 1049-1059.

PDF(1381 KB)
PDF(1381 KB)
工程(英文) ›› 2019, Vol. 5 ›› Issue (6) : 1049-1059. DOI: 10.1016/j.eng.2019.10.003
研究论文
RESEARCH ARTICLE

提高在线模型识别平台效率的多目标最优实验设计框架

作者信息 +

A Multi-Objective Optimal Experimental Design Framework for Enhancing the Efficiency of Online Model Identification Platforms

Author information +
History +

摘要

自动化和数字化方面的最新进展使得物理设备与其对应的虚拟设备紧密集成,从而促进了实时建模与多个过程的自动优化。此类系统提供了丰富且不断更新的数据环境,使得系统随着时间的推移做出决策,并将过程推向最优目标成为可能。在许多制造过程中,为了实现整体最优过程,必须同时评估与过程性能和成本有关的多个目标函数。本文提出了一个多目标最优实验设计框架,用于提高在线模型识别平台的效率。所提出的框架能够灵活权衡实验设计解决方案,这些解决方案可以在线计算(即在执行实验期间)。将该框架应用于流动反应器中动力学模型在线识别的案例研究,并确定了微反应器中苯甲酸(benzoic acid, BA)和乙醇酯化的动力学模型。

Abstract

Recent advances in automation and digitization enable the close integration of physical devices with their virtual counterparts, facilitating the real-time modeling and optimization of a multitude of processes in an automatic way. The rich and continuously updated data environment provided by such systems makes it possible for decisions to be made over time to drive the process toward optimal targets. In many manufacturing processes, in order to achieve an overall optimal process, the simultaneous assessment of multiple objective functions related to process performance and cost is necessary. In this work, a multiobjective optimal experimental design framework is proposed to enhance the efficiency of online model-identification platforms. The proposed framework permits flexibility in the choice of trade-off experimental design solutions, which are calculated online—that is, during the execution of experiments. The application of this framework to improve the online identification of kinetic models in flow reactors is illustrated using a case study in which a kinetic model is identified for the esterification of benzoic acid and ethanol in a microreactor.

关键词

多目标优化 / 最优实验设计 / 在线

Keywords

Multi-objective optimization / Optimal design of experiments / Online

引用本文

导出引用
Arun Pankajakshan, Conor Waldron, Marco Quaglio. 提高在线模型识别平台效率的多目标最优实验设计框架. Engineering. 2019, 5(6): 1049-1059 https://doi.org/10.1016/j.eng.2019.10.003

参考文献

[1]
Reitze A, Jürgensmeyer N, Lier S, Kohnke M, Riese J, Grünewald M. Roadmap for a smart factory: a modular, intelligent concept for the production of specialty chemicals. Angew Chem Int Ed Engl 2018;57(16):4242–7.
[2]
Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of industry 4.0: a review. Engineering 2017;3(5):616–30.
[3]
Bédard AC, Adamo A, Aroh KC, Russell MG, Bedermann AA, Torosian J, et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 2018;361(6408):1220–5.
[4]
Schweidtmann AM, Clayton AD, Holmes N, Bradford E, Bourne RA, Lapkin AA. Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives. Chem Eng J 2018;352:277–82.
[5]
Cherkasov N, Bai Y, Expósito AJ, Rebrov EV. OpenFlowChem—a platform for quick, robust and flexible automation and self-optimisation of flow chemistry. React Chem Eng 2018;3(5):769–80.
[6]
Holmes N, Akien GR, Savage RJD, Stanetty C, Baxendale IR, Blacker AJ, et al. Online quantitative mass spectrometry for the rapid adaptive optimisation of automated flow reactors. React Chem Eng 2016;1(1):96–100.
[7]
Echtermeyer A, Amar Y, Zakrzewski J, Lapkin A. Self-optimisation and modelbased design of experiments for developing a C-H activation flow process. Beilstein J Org Chem 2017;13:150–63.
[8]
Schaber SD, Born SC, Jensen KF, Barton PI. Design, execution, and analysis of time-varying experiments for model discrimination and parameter estimation in microreactors. Org Process Res Dev 2014;18(11):1461–7.
[9]
Hone CA, Holmes N, Akien GR, Bourne RA, Muller FL. Rapid multistep kinetic model generation from transient flow data. React Chem Eng 2017;2(2):103–8.
[10]
Reizman BJ, Jensen KF. An automated continuous-flow platform for the estimation of multistep reaction kinetics. Org Process Res Dev 2012;16 (11):1770–82.
[11]
McMullen JP, Jensen KF. Rapid determination of reaction kinetics with an automated microfluidic system. Org Process Res Dev 2011;15(2):398–407.
[12]
Robbins H. Some aspects of the sequential design of experiments. Bull Am Math Soc 1952;58(5):527–35.
[13]
Burke EK, Kendall G, editors. Search methodologies: introductory tutorials in optimization and decision support techniques. Boston: Springer; 2014.
[14]
Marler RT, Arora JS. The weighted sum method for multi-objective optimization: new insights. Struct Multidiscipl Optim 2010;41(6):853–62.
[15]
Mavrotas G. Effective implementation of the e-constraint method in multiobjective mathematical programming problems. Appl Math Comput 2009;213 (2):455–65.
[16]
Zitzler E. Evolutionary algorithms for multiobjective optimization: methods and applications. Zurich: Swiss Federal Institute of Technology; 1999.
[17]
Hwang CL, Masud ASM. Multiple objective decision making—methods and applications. Berlin: Springer-Verlag; 1979.
[18]
Telen D, Logist F, Van Derlinden E, Tack I, Van Impe J. Optimal experiment design for dynamic bioprocesses: a multi-objective approach. Chem Eng Sci 2012;78:82–97.
[19]
Galvanin F, Cao E, Al-Rifai N, Gavriilidis A, Dua V. A joint model-based experimental design approach for the identification of kinetic models in continuous flow laboratory reactors. Comput Chem Eng 2016;95:202–15.
[20]
Maheshwari V, Rangaiah GP, Samavedham L. Multiobjective framework for model-based design of experiments to improve parameter precision and minimize parameter correlation. Ind Eng Chem Res 2013;52(24):8289–304.
[21]
Manesso E, Sridharan S, Gunawan R. Multi-objective optimization of experiments using curvature and fisher information matrix. Processes 2017;5(4):63.
[22]
Burger J, Asprion N, Blagov S, Böttcher R, Nowak U, Bortz M, et al. Multiobjective optimization and decision support in process engineering— implementation and application. Chem Ing Tech (Weinh) 2014;86 (7):1065–72.
[23]
Forte E, von Harbou E, Burger J, Asprion N, Bortz M. Optimal design of laboratory and pilot-plant experiments using multiobjective optimization. Chem Ing Tech (Weinh) 2017;89(5):645–54.
[24]
Nöh K, Niedenführ S, Beyß M, Wiechert W. A Pareto approach to resolve the conflict between information gain and experimental costs: multiple-criteria design of carbon labeling experiments. PLoS Comput Biol 2018;14(10): e1006533.
[25]
Quaglio M, Waldron C, Pankajakshan A, Cao E, Gavriilidis A, Fraga ES, et al. An online reparametrisation approach for robust parameter estimation in automated model identification platforms. Comput Chem Eng 2019;124:270–84.
[26]
Valera FE, Quaranta M, Moran A, Blacker J, Armstrong A, Cabral JT, et al. The flow’s the thing...or is it? Assessing the merits of homogeneous reactions in flask and flow. Angew Chem Int Ed Engl 2010;49(14):2478–85.
[27]
Mozharov S, Nordon A, Littlejohn D, Wiles C, Watts P, Dallin P, et al. Improved method for kinetic studies in microreactors using flow manipulation and noninvasive Raman spectrometry. J Am Chem Soc 2011;133 (10):3601–8.
[28]
McMullen JP, Stone MT, Buchwald SL, Jensen KF. An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. Angew Chem Int Ed Engl 2010;49(39):7076–80.
[29]
McMullen JP, Jensen KF. An automated microfluidic system for online optimization in chemical synthesis. Org Process Res Dev 2010;14(5):1169–76.
[30]
Audoly S, Bellu G, D’Angiò L, Saccomani MP, Cobelli C. Global identifiability of nonlinear models of biological systems. IEEE Trans Biomed Eng 2001;48 (1):55–65.
[31]
Montgomery DC. Design and analysis of experiments. 8th ed. Hoboken: John Wiley & Sons; 2012.
[32]
van Rossum G, Drake FL. Python language reference manual. Bristol: Network Theory Limited; 2003.
[33]
Cover TM, Thomas JA. Elements of information theory. 2nd ed. Hoboken: John Wiley & Sons; 2006.
[34]
Bard Y. Nonlinear parameter estimation. New York: Academic Press; 1974.
[35]
Franceschini G, Macchietto S. Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 2008;63(19):4846–72.
[36]
Pukelsheim F. Optimal design of experiments. New York: John Wiley & Sons; 1993.
[37]
Pipus G, Plazl I, Koloini T. Esterification of benzoic acid inmicrowave tubular flow reactor. Chem Eng J 2000;76(3):239–45.
[38]
Buzzi-Ferraris G, Manenti F. Kinetic models analysis. Chem Eng Sci 2009;64 (5):1061–74.
PDF(1381 KB)

Accesses

Citation

Detail

段落导航
相关文章

/