
永磁材料稀土减量化的计算设计
Alexander Kovacs, Johann Fischbacher, Markus Gusenbauer, Harald Oezelt, Heike C. Herper, Olga Yu. Vekilova, Pablo Nieves, Sergiu Arapan, Thomas Schrefl
工程(英文) ›› 2020, Vol. 6 ›› Issue (2) : 148-153.
永磁材料稀土减量化的计算设计
Computational Design of Rare-Earth Reduced Permanent Magnets
多尺度模拟是研究新型永磁材料的关键工具。从第一性原理出发,我们利用一系列模拟方法计算出由新型磁性材料构成的永磁体的可能的最大矫顽场和最大磁能积。利用自适应遗传算法,我们发现了有利于形成永磁体的多种富铁(Fe)磁性相。我们利用从头计算模拟得到的材料本征特性作为微磁学模拟的输入参数,对具有真实结构的永磁体的磁滞特性进行了微磁模拟。我们利用机器学习技术对永磁体的微结构进行了优化,从而预测出该磁性相的矫顽力和最大磁能积的理论上限。我们计算了由几种候选硬磁相构造的永磁体的结构-性能关系,并用[矫顽力(T),最大磁能积(kJ·m–3) ]表示,具体结果如下:铁-锡-锑(Fe3Sn0.75Sb0.25)永磁体为(0.49, 290); L10型有序相的铁-镍(L10 FeNi)永磁体为(1, 400);钴-铁-钽(CoFe6Ta)永磁体为(0.87, 425);锰-铝(MnAl)永磁体为(0.53, 80)。
Multiscale simulation is a key research tool in the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density product of a magnet made from a novel magnetic material composition. Iron (Fe)-rich magnetic phases suitable for permanent magnets can be found by means of adaptive genetic algorithms. The intrinsic properties computed by ab initio simulations are used as input for micromagnetic simulations of the hysteresis properties of permanent magnets with a realistic structure. Using machine learning techniques, the magnet's structure can be optimized so that the upper limits for coercivity and energy density product for a given phase can be estimated. Structure property relations of synthetic permanent magnets were computed for several candidate hard magnetic phases. The following pairs (coercive field (T), energy density product (kJ·m−3)) were obtained for iron-tin-antimony (Fe3Sn0.75Sb0.25): (0.49, 290), L10-ordered iron-nickel (L10 FeNi): (1, 400), cobalt-iron-tantalum (CoFe6Ta): (0.87, 425), and manganese-aluminum (MnAl): (0.53, 80).
Rare-earth / Permanent magnets / Micromagnetics
[1] |
Constantinides S. Permanent magnets in a changing world market. Magn Mag 2016;Spring:6–9.
|
[2] |
Nakamura H. The current and future status of rare earth permanent magnets. Scr Mater 2018;154:273–6.
|
[3] |
Coey JMD. Permanent magnets: plugging the gap. Scr Mater 2012;67 (6):524–9.
|
[4] |
Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T, Exl L, et al. On the limits of coercivity in permanent magnets. Appl Phys Lett 2017;111 (7):072404.
|
[5] |
Nieves P, Arapan S, Hadjipanayis GC, Niarchos D, Barandiaran JM, Cuesta-López S. Applying high-throughput computational techniques for discovering nextgeneration of permanent magnets. Phys Status Solidi C 2016;13(10– 12):942–50.
|
[6] |
Nieves P, Arapan S, Cuesta-López S. Exploring the crystal structure space of CoFe2P by using adaptive genetic algorithm methods. IEEE Trans Magn 2017;53(11):1–5.
|
[7] |
Arapan S, Nieves P, Cuesta-López S. A high-throughput exploration of magnetic materials by using structure predicting methods. J Appl Phys 2018;123 (8):083904.
|
[8] |
Wills JM, Alouani M, Andersson P, Delin A, Eriksson O, Grechnyev O. Fullpotential electronic structure method: energy and force calculations with density functional and dynamical mean field theory. Berlin: Springer-Verlag; 2010.
|
[9] |
Fischbacher J, Kovacs A, Gusenbauer M, Oezelt H, Exl L, Bance S, et al. Micromagnetics of rare-earth efficient permanent magnets. J Phys Appl Phys 2018;51(19):193002.
|
[10] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59(3):1758–75.
|
[11] |
Quey R, Renversade L. Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data. Comput Methods Appl Mech Eng 2018;330:308–33.
|
[12] |
Salome-platform [Internet]. Guyancourt: OPEN CASCADE SAS; c2005–2019 [cited 2018 Feb 1]. Available from: http://www.salomeplatform.org/.
|
[13] |
Exl L, Fischbacher J, Kovacs A, Oezelt H, Gusenbauer M, Schrefl T. Preconditioned nonlinear conjugate gradient method for micromagnetic energy minimization. Comput Phys Commun 2019;235:179–86.
|
[14] |
Adams BM, Bohnhoff WJ, Dalbey KR, Eddy JP, Eldred MS, Gay DM, et al. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user’s manual. Livermore: Sandia National Laboratories; 2009. Report No.: SAND2010-2183.
|
[15] |
Gaunt P. Magnetic viscosity in ferromagnets: I. phenomenological theory. Philos Mag 1976;34(5):775–80.
|
[16] |
Carilli MF, Delaney KT, Fredrickson GH. Truncation-based energy weighting string method for efficiently resolving small energy barriers. J Chem Phys 2015;143(5):054105.
|
[17] |
Nieves P, Arapan S, Maudes-Raedo J, Marticorena-Sánchez R, Brío ND, Kovacs A, et al. Database of novel magnetic materials for high-performance permanent magnet development. Comput Mater Sci 2019;168:188–202.
|
[18] |
Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#115_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http://crono.ubu.es/novamag/show_item_features?mafid=1574.
|
[19] |
Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#160_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1545.
|
[20] |
Material features: NOVAMAG_theory_ICCRAM_Co1Fe6Ta1_#38_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1534.
|
[21] |
Material features: NOVAMAG_theory_ICCRAM_Co2Fe12Ta2_#63_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1579.
|
[22] |
Material features: NOVAMAG_theory_ICCRAM_Co4Fe24Ta4_#8_1 [Internet]. Burgos: ADMIRABLE Group; c2018 [cited 2018 Nov 1]. Available from: http:// crono.ubu.es/novamag/show_item_features?mafid=1551.
|
[23] |
Lizárraga R, Pan F, Bergqvist L, Holmström E, Gercsi Z, Vitos L. First principles theory of the hcp–fcc phase transition in cobalt. Sci Rep 2017;7(1):3778.
|
[24] |
Sales BC, Saparov B, McGuire MA, Singh DJ, Parker DS. Ferromagnetism of Fe3Sn and alloys. Sci Rep 2014;4(1):7024.
|
[25] |
Vekilova OY, Fayyazi B, Skokov KP, Gutfleisch O, Echevarria-Bonet C, Barandiarán JM, et al. Tuning the magnetocrystalline anisotropy of Fe3Sn by alloying. Phys Rev B 2019;99(2):024421.
|
[26] |
Kovacs A, Fischbacher J, Oezelt H, Schrefl T, Kaidatzis A, Salikhov R, et al. Micromagnetic simulations for coercivity improvement through nanostructuring of rare-earth free L10-FeNi magnets. IEEE Trans Magn 2017;53 (11):7002205.
|
[27] |
Niarchos D, Gjoka M, Psycharis V, Devlin E. Towards realization of bulk L10-FeNi. In: Proceedings of 2017 IEEE International Magnetics Conference (INTERMAG); 2017 Apr 24–28; Dublin, Ireland; 2017.
|
[28] |
Nieves P, Arapan S, Schrefl T, Cuesta-Lopez S. Atomistic spin dynamics simulations of the MnAl s-phase and its antiphase boundary. Phys Rev B 2017;96(22):224411.
|
[29] |
Gjoka M, Psycharis V, Devlin E, Niarchos D, Hadjipanayis G. Effect of Zr substitution on the structural and magnetic properties of the series Nd1xZrxFe10Si2 with the ThMn12 type structure. J Alloys Compd 2016;687:240–5.
|
[30] |
Gabay AM, Cabassi R, Fabbrici S, Albertini F, Hadjipanayis GC. Structure and permanent magnet properties of Zr1xRxFe10Si2 alloys with R = Y, La, Ce, Pr and Sm. J Alloys Compd 2016;683:271–5.
|
[31] |
Kronmüller H, Fähnle M. Micromagnetism and the microstructure of ferromagnetic solids. Cambridge: Cambridge University Press; 2003.
|
[32] |
Zickler GA, Fidler J, Bernardi J, Schrefl T, Asali A. A combined TEM/STEM and micromagnetic study of the anisotropic nature of grain boundaries and coercivity in Nd–Fe–B magnets. Adv Mater Sci Eng 2017;2017:6412042.
|
[33] |
Richter HJ. Model calculations of the angular dependence of the switching field of imperfect ferromagnetic particles with special reference to barium ferrite. J Appl Phys 1989;65(9):3597–601.
|
[34] |
Wang D, Sellmyer DJ, Panagiotopoulos I, Niarchos D. Magnetic properties of Nd(Fe,Ti)12 and Nd(Fe,Ti)12Nx films of perpendicular texture. J Appl Phys 1994;75(10):6232–4.
|
[35] |
Bance S, Bittner F, Woodcock TG, Schultz L, Schrefl T. Role of twin and antiphase defects in MnAl permanent magnets. Acta Mater 2017;131:48–56.
|
/
〈 |
|
〉 |