(011)取向单晶衬底上生长的非晶Sm-Co薄膜的面内各向异性调控

Wenhui Liang, Houbo Zhou, Jiefu Xiong, Fengxia Hu, Jia Li, Jian Zhang, Jing Wang, Jirong Sun, Baogen Shen

工程(英文) ›› 2020, Vol. 6 ›› Issue (2) : 158-163.

PDF(742 KB)
PDF(742 KB)
工程(英文) ›› 2020, Vol. 6 ›› Issue (2) : 158-163. DOI: 10.1016/j.eng.2019.11.010
研究论文
Article

(011)取向单晶衬底上生长的非晶Sm-Co薄膜的面内各向异性调控

作者信息 +

Tunable In-Plane Anisotropy in Amorphous Sm–Co Films Grown on (011)- Oriented Single-Crystal Substrates

Author information +
History +

摘要

具有单轴面内各向异性的非晶Sm-Co薄膜在信息存储和自旋电子学领域中都具有广阔的应用前景。产生单轴面内各向异性的最有效方法是在薄膜沉积过程中施加面内磁场。然而,这种方法通常需要复杂的设备。本文中,我们报道了一种产生单轴面内各向异性的新方法,只需要将非晶Sm-Co薄膜生长在(011)取向的单晶衬底上,薄膜生长过程中不需要施加任何外部磁场。薄膜的各向异性常数kA随衬底晶格常数的变化而变化。生长在LaAlO3 (011)衬底上的非晶Sm-Co薄膜的各向异性常数kA高达3.3×104 J·m−3。详细分析表明,衬底各向异性应变引起的铁磁畴的择优生长,以及薄膜中Sm-Co、Co-Co取向对的有序化,在非晶Sm-Co薄膜单轴面内各向异性的产生上起到了重要作用。这项工作为在非晶Sm-Co薄膜中获得单轴面内各向异性提供了一种新方法。

Abstract

Amorphous Sm–Co films with uniaxial in-plane anisotropy have great potential for application in informationstorage media and spintronic materials. The most effective method to produce uniaxial in-plane anisotropy is to apply an in-plane magnetic field during deposition. However, this method inevitably requires more complex equipment. Here, we report a new way to produce uniaxial in-plane anisotropy by growing amorphous Sm–Co films onto (011)-cut single-crystal substrates in the absence of an external magnetic field. The tunable anisotropy constant, kA, is demonstrated with variation in the lattice parameter of the substrates. A kA value as high as about 3.3 × 104 J·m−3 was obtained in the amorphous Sm–Co film grown on a LaAlO3(011) substrate. Detailed analysis indicated that the preferential seeding and growth of ferromagnetic (FM) domains caused by the anisotropic strain of the substrates, along with the formed Sm–Co, Co–Co directional pair ordering, exert a substantial effect. This work provides a new way to obtain in-plane anisotropy in amorphous Sm–Co films.

关键词

非晶Sm-Co膜,面内单轴各向异性,磁控溅射 /

Keywords

Amorphous Sm–Co films / In-plane uniaxial anisotropy / Sputtering

引用本文

导出引用
Wenhui Liang, Houbo Zhou, Jiefu Xiong. (011)取向单晶衬底上生长的非晶Sm-Co薄膜的面内各向异性调控. Engineering. 2020, 6(2): 158-163 https://doi.org/10.1016/j.eng.2019.11.010

参考文献

[1]
Gronau M, Geoke H, Schuffler D, Sprenger S. Correlation between domain wall properties and material parameters in amorphous SmCo-films. IEEE Trans Magn 1983;19(5):1653–5.
[2]
Magnus F, Moubah R, Roos AH, Kruk A, Kapaklis V, Hase T, et al. Tunable giant magnetic anisotropy in amorphous SmCo thin films. Appl Phys Lett 2013;102 (16):162402.
[3]
Gronau M, Schuffler D, Sprenger S. The magnetic properties of amorphous SmCo-films. IEEE Trans Magn 1984;20(1):66–8.
[4]
Soltani ML, Lahoubi M, Fillion G, Barbara B. Magnetic properties of amorphous Sm–Co and Er–Co alloys. J Alloys Compd 1998;275–277:602–5.
[5]
Magnus F, Moubah R, Arnalds UB, Kapaklis V, Brunner A, Schäfer R, et al. Giant magnetic domains in amorphous SmCo thin films. Phys Rev B Condens Matter Mater Phys 2014;89(22):224420.
[6]
Magnus F, Moubah R, Kapaklis V, Andersson G, Hjörvarsson B. Magnetostrictive properties of amorphous SmCo thin films with imprinted anisotropy. Phys Rev B Condens Matter Mater Phys 2014;89 (13):134414.
[7]
Numata T, Kiriyama H, Inokuchi S, Sakurai Y. Magnetic anisotropy in SmCo amorphous films. J Appl Phys 1988;64(10):5501–3.
[8]
Cheung TD, Wickramasekara L, Cadieue FJ. Large in-plane anisotropy in amorphous Sm–Co and (Sm+Ti)Fe films. J Appl Phys 1985;57(8):3598–600.
[9]
Chen K, Hegde H, Cadieu FJ. Induced anisotropy in amorphous Sm–Co sputtered films. Appl Phys Lett 1992;61(15):1861–3.
[10]
[0] Chen K, Hegde H, Jen SU, Cadieu FJ. Different types of anisotropy in amorphous SmCo films. J Appl Phys 1993;73(10):5923–5.
[11]
Moubah R, Magnus F, Hjörvarsson B, Andersson G. Strain enhanced magnetic anisotropy in SmCo/BaTiO3 multiferroic heterostructures. J Appl Phys 2014;115(5):053905.
[12]
Liu M, Howe BM, Grazulis L, Mahalingam K, Nan T, Sun NX, et al. Voltageimpulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv Mater 2013;25(35):4886–92.
[13]
Ward TZ, Budai JD, Gai Z, Tischler JZ, Yin L, Shen J. Elastically driven anisotropic percolation in electronic phase-separated manganites. Nat Phys 2009;5 (12):885–8.
[14]
Zhao YY, Wang J, Kuang H, Hu FX, Liu Y, Wu RR, et al. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)- Pr0.7Sr0.3MnO3/PMN–PT heterostructure. Sci Rep 2015;5:9668.
[15]
Zhou H, Wang L, Hou Y, Huang Z, Lu Q, Wu W. Evolution and control of the phase competition morphology in a manganite film. Nat Commun 2015;6:8980.
[16]
Suran G, Ounadjela K, Machizaud F. Evidence for structure-related induced anisotropy in amorphous CoTi soft ferromagnetic thin films. Phys Rev Lett 1986;57(24):3109–12.
[17]
Corb BW, O’Handley RC, Megusar J, Grant NJ. First-order, structural transformations in metallic glasses. Phys Rev Lett 1983;51(15):1386–9.
[18]
Liu Y, Hu FX, Zhang M, Wang J, Shen FR, Zuo WL, et al. Electric field control of magnetic properties of Nd2Fe14B thin films grown onto PMN–PT substrates. Appl Phys Lett 2017;110(2):022401.
PDF(742 KB)

Accesses

Citation

Detail

段落导航
相关文章

/