如何解读机器知识

Fashen Li, Lian Li, Jianping Yin, Yong Zhang, Qingguo Zhou, Kun Kuang

工程(英文) ›› 2020, Vol. 6 ›› Issue (3) : 218-220.

PDF(269 KB)
PDF(269 KB)
工程(英文) ›› 2020, Vol. 6 ›› Issue (3) : 218-220. DOI: 10.1016/j.eng.2019.11.013
观点述评

如何解读机器知识

作者信息 +

How to Interpret Machine Knowledge

Author information +
History +

引用本文

导出引用
Fashen Li, Lian Li, Jianping Yin. 如何解读机器知识. Engineering. 2020, 6(3): 218-220 https://doi.org/10.1016/j.eng.2019.11.013

参考文献

[1]
Pan Y. Special issue on artificial intelligence 2.0. Front Inf Technol Electron Eng 2017;18(1):1–2.
[2]
Pan Y. 2018 special issue on artificial intelligence 2.0: theories and applications. Front Inf Technol Electron Eng 2018;19(1):1–2.
[3]
Judea Pearl on his inspiration and the breakthrough moments of his research [Internet]. Cambridge: Cambridge University Press; 2012 [cited 2020 Jan 03]. Available from: http://www.cambridgeblog.org/2012/07/qa-with-judea-pearlpart-one/.
[4]
Pearl J, Mackenzie D. The book of why: the new science of cause and effect. New York: Basic Books; 2018.
[5]
Newton I. Mathematical principles of natural philosophy. 2nd ed. London: A. Strahan; 1802.
[6]
Imbens GW, Rubin DB. Causal inference for statistics, social, and biomedical sciences: an introduction. New York: Cambridge University Press; 2015.
[7]
Lucci S, Kopec D. Artificial intelligence in the 21st century. Sterling: Stylus Publishing, LLC; 2015.
[8]
Molnar C. Interpretable machine learning: a guide for making black box models explainable [Internet]. 2019. Available from: https://christophm.github.io/ interpretable-ml-book/.
[9]
Ribeiro MT, Singh S, Guestrin C. ‘‘Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13–17; San Francisco, CA, USA. New York: Association for Computing Machinery; 2016. p. 1135–44.
PDF(269 KB)

Accesses

Citation

Detail

段落导航
相关文章

/