用高光谱发光法研究Cu(Inx,Ga1–x)Se2 (CIGS)模块中由P1引起的功率损耗的成因

César Omar Ramírez Quiroz, Laura-Isabelle Dion-Bertrand, Christoph J. Brabec, Joachim Müller, Kay Orgassa

工程(英文) ›› 2020, Vol. 6 ›› Issue (12) : 1395-1402.

PDF(2804 KB)
PDF(2804 KB)
工程(英文) ›› 2020, Vol. 6 ›› Issue (12) : 1395-1402. DOI: 10.1016/j.eng.2019.12.019
研究论文
Article

用高光谱发光法研究Cu(Inx,Ga1–x)Se2 (CIGS)模块中由P1引起的功率损耗的成因

作者信息 +

Deciphering the Origins of P1-Induced Power Losses in Cu(Inx,Ga1–x)Se2 (CIGS) Modules Through Hyperspectral Luminescence

Author information +
History +

摘要

在本文中,我们利用了高光谱高分辨率光致发光映射技术,这是一个强大的工具,可用于选择和优化在Cu(Inx,Ga1-x)Se2(CIGS)模块上对子电池进行图案化互连的激光烧蚀工艺。通过这种方式,我们可以完成对消融区域附近材料降解的深度监测以及对潜在机制的识别。具体而言,通过分析在CIGS沉积之前烧蚀的标准P1图案线,我们发现了沿着下部的钼槽边缘的异常发射猝灭效应。通过扫描电子显微镜(SEM)比较了P1边缘的横截面的形貌,我们进一步合理化产生这种效应的起因,但无法用厚度变化解释光发射的减少。我们还研究了激光诱导对CIGS沉积后的P1图案线带来的损伤。然后,我们首次记录了短距离损坏区域,该区域与在激光路径上应用的光学孔径无关。我们的发现能更好地理解P1引起的功率损耗,并为改进与行业相关的模块互连方案提供了新的见解。

Abstract

In this report, we show that hyperspectral high-resolution photoluminescence mapping is a powerful tool for the selection and optimiz1ation of the laser ablation processes used for the patterning interconnections of subcells on Cu(Inx,Ga1-x)Se2 (CIGS) modules. In this way, we show that in-depth monitoring of material degradation in the vicinity of the ablation region and the identification of the underlying mechanisms can be accomplished. Specifically, by analyzing the standard P1 patterning line ablated before the CIGS deposition, we reveal an anomalous emission-quenching effect that follows the edge of the molybdenum groove underneath. We further rationalize the origins of this effect by comparing the topography of the P1 edge through a scanning electron microscope (SEM) cross-section, where a reduction of the photoemission cannot be explained by a thickness variation. We also investigate the laser-induced damage on P1 patterning lines performed after the deposition of CIGS. We then document, for the first time, the existence of a short-range damaged area, which is independent of the application of an optical aperture on the laser path. Our findings pave the way for a better understanding of P1-induced power losses and introduce new insights into the improvement of current strategies for industry-relevant module interconnection schemes.

关键词

Cu(Inx / Ga1–x)Se2 / 电池到模块的效率差距 / 由P1引起的功率损耗 / 高光谱光致发光 / 激光烧蚀短程热效应

Keywords

Cu(Inx / Ga1-x)Se2 / Cell-to-module efficiency gap / P1-induced power losses / Hyperspectral photoluminescence / Laser ablation short-range heat effect

引用本文

导出引用
César Omar Ramírez Quiroz, Laura-Isabelle Dion-Bertrand, Christoph J. Brabec. 用高光谱发光法研究Cu(Inx,Ga1–x)Se2 (CIGS)模块中由P1引起的功率损耗的成因. Engineering. 2020, 6(12): 1395-1402 https://doi.org/10.1016/j.eng.2019.12.019

参考文献

[1]
Yoshida S. Solar frontier achieves world record thin-film solar cell efficiency of 22.9%. Sol Front News 2017;12:2–3.
[2]
Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY. Solar cell efficiency tables (version 54). Prog Photovoltaics Res Appl 2019;27:565–75.
[3]
Yoshida, S. Solar frontier achieves world record thin-film solar cell efficiency of 23.35% [Internet]. Tokyo: Solar Frontier; 2019 Jan 17 [cited 2019 Jun 11]. Available from: https://www.solar-frontier.com/eng/news/2019/0117_press. html.
[4]
Bermudez V, Perez-Rodriguez A. Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up. Nat Energy 2018;3:466–75.
[5]
Hutchins, M. NICE Solar Energy sets new world record for CIGS efficiency [Internet]. Berlin: pv magazine; 2019 Dec 4 [cited 2019 Jun 11]. Available from: https://www.pv-magazine.com/2019/12/04/nice-solar-energy-sets-new-worldrecord-for-cigs-efficiency/.
[6]
Britt J. Photovoltaic manufacturing cost and throughput improvements for thin film CIGS-based modules. Final technical report. Golden; National Renewable Energy Laboratory; 2002 Apr. Report No.: NREL/SR-520-32072.
[7]
Lee SW, Lee YJ, Lee YH, Chung JK, Kim DJ. A new laser patterning technology for low cost poly–Si thin film solar cells. In: Proceedings of SPIE Solar Energy + Technology II; 2010 Aug 1–4; San Diego, CA, USA; 2010.
[8]
Crozier ML, Brunton AN, Abbas A, Bowers JW, Kaminski PM, Walls JM, et al. One step thin-film PV interconnection process using laser and inkjet. In: Proceedings of the 39th the IEEE Photovoltaic Specialists Conference; 2013 Jun; Tampa, FL, USA. Hoboken: Wiley; 2013; p. 16–21.
[9]
Fields JD, Pach G, Horowitz KAW, Stockert TR, Woodhouse M, van Hest MFAM. Printed interconnects for photovoltaic modules. Sol Energy Mater Sol Cells 2017;159:536–45.
[10]
Wagner M, Würz R, Kessler F. Post-monolithic interconnection of CIGS solar cells. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference; 2009 Sep 21–25; Hamburg, Germany; 2009.
[11]
Pernet P, Goetz M, Niquille X, Fischer X, Shah A. Front contact and series connection problems of a-SI:H solar cells on polymer film substrates. In: Proceedings of 2nd World Conference Photovoltaic Energy Conversion; 1998 Jul 6–10; Vienna, Switzerland. Piscataway: IEEE; 1998. p. 976–9.
[12]
Scheer R, Schock H. Chalcogenide photovoltaics. Berlin: Wiley-VCH; 2011.
[13]
Schultz C, Basulto GAF, Ring S, Wolf C, Schlatmann R, Stegemann B. Revealing and identifying laser-induced damages in CIGSe solar cells by photoluminescence spectroscopy. J Photovoltaics 2017;7(5):1442–9.
[14]
Schultz C, Schuele M, Stelmaszczyk K, Weizman M, Gref O, Friedrich F, et al. Laser-induced local phase transformation of CIGSe for monolithic serial interconnection: analysis of the material properties. Sol Energy Mater Sol Cells 2016;157:636–43.
[15]
Lany S, Zunger A. Light- and bias-induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe–VCu) vacancy complex. J Appl Phys 2006;100:113725.
[16]
Tran TMH, Pieters BE, Ulbrich C, Gerber A, Kirchartz T, Rau U. Transient phenomena in Cu(In,Ga)Se2 solar modules investigated by electroluminescence imaging. Thin Solid Films 2013;535:307–10.
[17]
Marcet S, Verhaegen M, Blais-Ouellette S, Martel R. Raman spectroscopy hyperspectral imager based on Bragg tunable filters. In: Proceedings of SPIE— The International Society for Optical Engineering; 2012 Feb 2–6; San Francisco, CA, USA. Bellingham:SPIE; 2012.
[18]
Glebov AL, Mokhun O, Rapaport A, Vergnole S, Smirnov V, Glebov LB. Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging. Micro-Optics 2012;2012(8428): 84280C.
[19]
Schüle M, Schultz C, Juzumas V, Stelmaszczyk K, Weizman M, Wolf C, et al. Laser patterning of CIGSe solar cells using nano- and picosecond pulsespossibilities and challenges. In: Proceedings of the 28th European Photovoltaic Conference and Exhibition; 2013 Oct 1–3; Paris, France; 2013.
[20]
Westin PO, Wätjen JT, Zimmermann U, Edoff M. Microanalysis of laser microwelded interconnections in CIGS PV modules. Sol Energy Mater Sol Cells 2012;98:172–8.
[21]
Heise G, Domke M, Konrad J, Pavic F, Schmidt M, Vogt H, et al. Monolithical serial interconnects of large cis solar cells with picosecond laser pulses. Phys Procedia 2011;12:149–55.
[22]
Brown G, Faifer V, Pudov A, Anikeev S, Bykov E, Contreras M, et al. Determination of the minority carrier diffusion length in compositionally graded Cu(In,Ga)Se2 solar cells using electron beam induced current. Appl Phys Lett 2010;96:30–2.
[23]
Delamarre A, Ory D, Paire M, Lincot D, Guillemoles JF, Lombez L. Evaluation of micrometer scale lateral fluctuations of transport properties in CIGS solar cells. In: Proceedings of the 2013 Physics, Simulation, Photonic Engineering Photovolt Devices II; 2013 Mar 25; San Francisco, CA, USA; 2013.
[24]
Schultz C, Schule M, Stelmaszczyk K, Weizman M, Gref O, Friedrich F, et al. Controlling the thermal impact of ns laser pulses for the preparation of the P2 interconnect by local phase transformation in CIGSe. In: Proceedings of the 2015 IEEE 42nd Photovolt Specialist Conference PVSC; 2015 Jun 14–19; New Orleans, LA, USA. New York: IEEE; 2015. p. 13–6.
[25]
Ruckh M, Kessler J, Oberacker TA, Schock HW. Thermal decomposition of ternary chalcopyrite thin films. Jpn J Appl Phys 1993;32:65–7.
[26]
Hermann J, Benfarah M, Bruneau S, Axente E, Coustillier G, Itina T, et al. Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. J Phys D Appl Phys 2006;39:453–60.
[27]
Parravicini J, Acciarri M, Murabito M, Donne AL, Gasparotto A, Binetti S. Indepth photoluminescence spectra of pure CIGS thin films. Appl Opt 2018;57:1849–56.
PDF(2804 KB)

Accesses

Citation

Detail

段落导航
相关文章

/