一种系统性制造3D打印患者匹配式颅颌面重建植入物的方法

Ruxu Du, Yu-Xiong Su, Yu Yan, Wing Shan Choi, Wei-Fa Yang, Chunyu Zhang, Xianshuai Chen, Justin Paul Curtin, Jianglin Ouyang, Bitao Zhang

工程(英文) ›› 2020, Vol. 6 ›› Issue (11) : 1291-1301.

PDF(4260 KB)
PDF(4260 KB)
工程(英文) ›› 2020, Vol. 6 ›› Issue (11) : 1291-1301. DOI: 10.1016/j.eng.2020.02.019
研究论文
Article

一种系统性制造3D打印患者匹配式颅颌面重建植入物的方法

作者信息 +

A Systematic Approach for Making 3D-Printed Patient-Specific Implants for Craniomaxillofacial Reconstruction

Author information +
History +

摘要

通常,在头颈部外科中广泛应用的颅颌面重建植入物都被制造为标准样式。在手术过程中,医生必须手工弯折颅颌面重建植入物以匹配不同患者的骨骼解剖结构。弯曲植入物的过程非常耗时,尤其是对于一些缺乏经验的外科医生来说,很难操作。此外,反复的弯折可能会使得植入物内应力集中,在咀嚼载荷作用下易发生疲劳,最终导致植入物疲劳断裂、螺钉松动、骨吸收等并发症。目前已有一些关于3D打印颅颌面重建患者匹配式植入物的报道,但很少有人考虑到植入物的质量问题。在本文中,我们提出了一种制作颅颌面重建3D打印手术植入物的系统性方法。这一方法包括三个部分的内容:首先,我们基于SolidWorks®软件开发出一个容易使用的设计模块,该模块可帮助外科医生设计手术用颅颌面重建植入物及其辅助工具;设计工程师可以在此基础上进行更详细的设计,并借助有限元模拟来优化设计。接着,制造过程可分为三个步骤进行:第一步检测原材料粉末,第二步设置适当参数进行3D打印,第三步对3D打印产品进行后处理(即热处理和表面处理)以保证植入物的质量和性能。最后,对植入物进行成品检测和消毒后用于颅颌面重建手术中,术后再使用患者信息追踪软件辅助术后康复随访。采用这种方法,目前我们已成功完成了41例手术。3D打印患者匹配式植入物有很多优点,能减少手术时间,加快患者恢复。此外,本文提出的方法也有助于保证植入物的质量安全。

Abstract

Craniomaxillofacial reconstruction implants, which are extensively used in head and neck surgery, are conventionally made in standardized forms. During surgery, the implant must be bended manually to match the anatomy of the individual bones. The bending process is time-consuming, especially for inexperienced surgeons. Moreover, repetitive bending may induce undesirable internal stress concentration, resulting in fatigue under masticatory loading in vivo and causing various complications such as implant fracture, screw loosening, and bone resorption. There have been reports on the use of patient-specific 3D-printed implants for craniomaxillofacial reconstruction, although few reports have considered implant quality. In this paper, we present a systematic approach for making 3D-printed patient-specific surgical implants for craniomaxillofacial reconstruction. The approach consists of three parts: First, an easy-touse design module is developed using Solidworks® software, which helps surgeons to design the implants and the axillary fixtures for surgery. Design engineers can then carry out the detailed design and use finite-element simulation (FEM) to optimize the design. Second, the fabrication process is carried out in three steps: ① testing the quality of the powder; ② setting up the appropriate process parameters and running the 3D printing process; and ③ conducting post-processing treatments (i.e., heat and surface treatments) to ensure the quality and performance of the implant. Third, the operation begins after the final checking of the implant and sterilization. After the surgery, postoperative rehabilitation follow-up can be carried out using our patient tracking software. Following this systematic approach, we have successfully conducted a total of 41 surgical cases. 3D-printed patient-specific implants have a number of advantages; in particular, their use reduces surgery time and shortens patient recovery time. Moreover, the presented approach helps to ensure implant quality.

关键词

患者匹配式植入物 / 颅颌面重建 / 3D打印 / 手术

Keywords

Patient-specific implant / Craniomaxillofacial reconstruction / 3D printing / Surgery

引用本文

导出引用
Ruxu Du, Yu-Xiong Su, Yu Yan. 一种系统性制造3D打印患者匹配式颅颌面重建植入物的方法. Engineering. 2020, 6(11): 1291-1301 https://doi.org/10.1016/j.eng.2020.02.019

参考文献

[1]
Marchetti C, Bianchi A, Mazzoni S, Cipriani R, Campobassi A. Oromandibular reconstruction using a fibula osteocutaneous free flap: four different ‘‘preplating” techniques. Plast Reconstr Surg 2006;118(3):643–51.
[2]
Martola M, Lindqvist C, Hänninen H, Al-Sukhun J. Fracture of titanium plates used for mandibular reconstruction following ablative tumor surgery. J Biomed Mater Res B 2007;80B(2):345–52.
[3]
Katakura A, Shibahara T, Noma H, Yoshinari M. Material analysis of AO plate fracture cases. J Oral Maxillofac Surgerys 2004;62(3):348–52.
[4]
Li J, Sun J, Ma HT. Reconstruction of maxillary and mandibular defect with individual titanium mesh/plate—a clinical study. J Oral Maxillofac Surg 2003;13(1):17–20. Chinese.
[5]
Singare S, Li D, Lu B, Liu Y, Gong Z, Liu Y. Design and fabrication of custom mandible titanium tray based on rapid prototyping. Med Eng Phys 2004;26 (8):671–6.
[6]
Li B, Jiang TF, Shen SY, Cai M, Jiang WB, Shen GF, et al. Accuracy of 3D printing individual titanium plates for maxillary repositioning in orthognathic surgery. China J Oral Maxillofac Surg 2016;14(5):419–24. Chinese.
[7]
Zhang B, Pei X, Song P, Sun H, Li H, Fan Y, et al. Porous bioceramics produced by inkjet 3D printing: effect of printing ink formulation on the ceramic macro and micro porous architectures control. Compos Part B Eng 2018;155(15):112–21.
[8]
Diao J, Ouyang J, Deng T, Liu X, Feng Y, Zhao N, et al. 3D-plotted beta-tricalcium phosphate scaffolds with smaller pore sizes improve in vivo bone regeneration and biomechanical properties in a critical-sized calvarial defect rat model. Adv Healthcare Meter 2018;7(17):1800441.
[9]
Rotaru H, Stan H, Florian IS, Schumacher R, Park YT, Kim SG, et al. Cranioplasty with custom-made implants: analyzing the cases of 10 patients. J Oral Maxillofac Surg 2012;70(2):e169–76.
[10]
Rotaru H, Schumacher R, Kim SG, Dinu C. Selective laser melted titanium implants: a new technique for the reconstruction of extensive zygomatic complex defects. Maxillofac Plast Reconstr Surg 2015;37(1):1.
[11]
Chaware SM, Bagaria V, Kuthe A. Application of the rapid prototyping technique to design a customized temporomandibular joint used to treat temporomandibular ankylosis. Indian J Plast Surg 2009;42(1):85–93.
[12]
Park EK, Lim JY, Yun IS, Kim JS, Woo SH, Kim DS, et al. Cranioplasty enhanced by three-dimensional printing: custom-made three-dimensional-printed titanium implants for skull defects. J Craniofac Surg 2016;27(4):943–9.
[13]
Rana M, Chin SJ, Muecke T, Kesting M, Groebe A, Riecke B, et al. Increasing the accuracy of mandibular reconstruction with free fibula flaps using functionalized selective laser-melted patient-specific implants: a retrospective multicenter analysis. J Craniomaxillofac Surg 2017;45(8):1212–9.
[14]
Wilde F, Kasper R, Sakkas A, Pietzka S, Winter K, Schramm A, et al. Biomechanical in-vitro study concerning the stability of customized CAD/ CAM mandibular reconstruction plates. Comparison of additively and subtractively manufactured as well as hand-bended plates. Int J Oral Maxillofac Surg 2019;48(S1):150–1.
[15]
Lowther M, Louth S, Davey A, Hussain A, Ginestra P, Carter L, et al. Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants. Addit Manuf 2019;28:565–84.
[16]
Vahtsevanos K, Triaridis S, Patrikidou A, Uttley D, Moore AJ, Bell A, et al. The Atkinson Morley’s Hospital joint neurosurgical–maxillofacial procedures: cranioplasty case series 1985–2003. J Craniomaxillofac Surg 2007;35 (8):336–42.
[17]
Renishaw plc. LaserImplantTM—case timeline (UK Only) [Internet]. New Mills: Renishaw plc; c2016 [cited 2019 Jun 27]. Available from: http://www. renishaw.com/go/media/pdf/en/3dcb96b444bf4ad6aed3394b779943ec.pdf.
[18]
Peel S, Eggbeer D, Burton H, Hanson H, Evans PL. Additively manufactured versus conventionally pressed cranioplasty implants: an accuracy comparison. Arch Proc Inst Mech Eng Part H J Eng Med 2018;232(9):949–61.
[19]
Lee CH, Chung YS, Lee SH, Yang HJ, Son YJ. Analysis of the factors influencing bone graft infection after cranioplasty. J Trauma Acute Care Surg 2012;73 (1):255–60.
[20]
Jackson TD, Wannares JJ, Lancaster RT, Rattner DW, Hutter MM. Does speed matter? The impact of operative time on outcome in laparoscopic surgery. Surg Endosc 2011;25(7):2288–95.
[21]
Phan K, Kim JS, Kim JH, Somani S, Di’Capua J, Dowdell JE, et al. Anesthesia duration as an independent risk factor for early postoperative complications in adults undergoing elective ACDF. Global Spine J 2017;7(8):727–34.
[22]
US Food and Drug Administration. Technical considerations for additive manufactured medical devices—guidance for Industry and Food and Drug Administration staff [Internet]. Silver Spring: US Food and Drug Administration; 2017 Dec 5 [2019 Jun 27]. Available from: https://www. fda.gov/media/97633/download.
[23]
Attar H, Calin M, Zhang LC, Scudino S, Eckert J. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater Sci Eng A 2014;593:170–7.
[24]
Gu DD, Hagedorn Y, Meiners W, Meng G, Batista RJS, Wissenbach K, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater 2012;60(9):3849–60.
[25]
Zhang Y, Xiu P, Jia Z, Zhang T, Yin C, Cheng Y, et al. Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications. Colloids Surf B Biointerfaces 2018;169(1):366–74.
[26]
Singh G, Singh H, Sidhu BS. Characterization and corrosion resistance of plasma sprayed HA and HA–SiO2 coatings on Ti–6Al–4V. Surf Coat Tech 2013;228:242–7.
[27]
Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials 2005;26(3):327–37.
[28]
Bigi A, Boanini E, Bracci B, Facchini A, Panzavolta S, Segatti F, et al. Nanocrystalline hydroxyapatite coatings on titanium: a new fast biomimetic method. Biomaterials 2005;26(19):4085–9.
[29]
Choudhury P, Agrawal DC. Sol–gel derived hydroxyapatite coatings on titanium substrates. Surf Coat Techno 2011;206(2–3):360–5.
[30]
Yang CC, Huang CY, Lin CC, Yen SK. Electrolytic deposition of collagen/HA composite on post HA/TiO2 coated Ti6Al4V implant alloy. J Electrochem Soc 2011;158(2):E13–20.
[31]
Jain P, Mandal T, Prakash P, Garg A, Balani K. Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO2 substrate. J Coat Technol Res 2013;10(2):263–75.
[32]
Yang WF, Zhang C, Choi W, Zhu W, Li DTS, Chen C, et al. A novel ‘surgeondominated’ approach to the design of 3D-printed patient-specific surgical plates in mandibular reconstruction: a proof-of-concept study. Int J Oral Maxillofac Surg 2019;49(1):13–21.
[33]
Huang Y, Yan Y, Pang X, Ding Q, Han S. Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating. Appl Surf Sci 2013;282:583–9.
[34]
Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials 2015;8(3):932–58.
[35]
Guillaume O, Geven MA, Varjas V, Varga P, Gehweiler D, Stadelmann VA, et al. Orbital floor repair using patient specific osteoinductive implant made by stereolithography. Biomaterials 2020;233:119721.
PDF(4260 KB)

Accesses

Citation

Detail

段落导航
相关文章

/