聚酰胺反渗透膜中水传递阻力的分子模拟——界面阻力和内部阻力

Yang Song, Mingjie Wei, Fang Xu, Yong Wang

工程(英文) ›› 2020, Vol. 6 ›› Issue (5) : 577-584.

PDF(1351 KB)
PDF(1351 KB)
工程(英文) ›› 2020, Vol. 6 ›› Issue (5) : 577-584. DOI: 10.1016/j.eng.2020.03.008
研究论文
Article

聚酰胺反渗透膜中水传递阻力的分子模拟——界面阻力和内部阻力

作者信息 +

Molecular Simulations of Water Transport Resistance in Polyamide RO Membranes: Interfacial and Interior Contributions

Author information +
History +

摘要

在分子水平上理解水分子在聚酰胺(PA)反渗透(RO)膜中的传递阻力对于这些膜的设计、制备和应用具有非常重要的指导意义。本文通过分子模拟来计算总传递阻力,并将其分成两部分——内部阻力和界面阻力。内部阻力取决于PA层的厚度,而界面阻力则不然。基于5 nm 厚的PA层的模拟显示界面阻力对总阻力的贡献率很大(> 62%)。然而,现实世界中,对于具有200 nm PA层的RO膜,界面阻力起次要作用,其贡献率低于10%。这表明,当使用典型方法估算RO膜的传递阻力时,存在不准确的风险,因为该方法简单地将5 nm厚的PA层的总阻力进行倍增,使得界面阻力被错误放大。此外,界面阻力和内部阻力均取决于PA层的化学性质。我们的模拟显示,减少PA层中剩余羧基的数量会导致内部阻力降低,因此,可以在不牺牲离子截留的情况下改善水的渗透性,这与实验结果高度吻合。

Abstract

Understanding the transport resistance of water molecules in polyamide (PA) reverse osmosis (RO) membranes at the molecular level is of great importance in guiding the design, preparation, and applications of these membranes. In this work, we use molecular simulation to calculate the total transport resistance by dividing it into two contributions: the interior part and the interfacial part. The interior resistance is dependent on the thickness of the PA layer, while the interfacial resistance is not. Simulation based on the 5 nm PA layer reveals that interfacial resistance is the dominating contribution (> 62%) to the total resistance. However, for real-world RO membranes with a 200 nm PA layer, interfacial resistance plays a minor role, with a contribution below 10%. This implies that there is a risk of inaccuracy when using the typical method to estimate the transport resistance of RO membranes, as this method involves simply multiplying the total transport resistance of the simulated value based on a membrane with a 5 nm PA layer. Furthermore, both the interfacial resistance and the interior resistance are dependent on the chemistry of the PA layer. Our simulation reveals that decreasing the number of residual carboxyl groups in the PA layer leads to decreased interior resistance; therefore, the water permeability can be improved at no cost of ion rejection, which is in excellent agreement with the experimental results.

关键词

传递阻力 / 反渗透 / 非平衡分子动力学 / 水分子亲水性 / 建模

Keywords

Transport resistance / Reverse osmosis / Non-equilibrium molecular dynamics / Water molecule affinity / Modeling

引用本文

导出引用
Yang Song, Mingjie Wei, Fang Xu. 聚酰胺反渗透膜中水传递阻力的分子模拟——界面阻力和内部阻力. Engineering. 2020, 6(5): 577-584 https://doi.org/10.1016/j.eng.2020.03.008

参考文献

[1]
Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Science and technology for water purification in the coming decades. Nature 2008;452(7185):301–10.
[2]
Drioli E, Stankiewicz AI, Macedonio F. Membrane engineering in process intensification—an overview. J Membr Sci 2011;380(1–2):1–8.
[3]
Li D, Wang HT. Recent developments in reverse osmosis desalination membranes. J Mater Chem 2010;20(22):4551–66.
[4]
Petersen RJ. Composite reverse osmosis and nanofiltration membranes. J Membr Sci 1993;83(1):81–150.
[5]
Shenvi SS, Isloor AM, Ismail AF. A review on RO membrane technology: developments and challenges. Desalination 2015;368:10–26.
[6]
Xu GR, Wang JN, Li CJ. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 2013;328:83–100.
[7]
Takaba H, Koshita R, Mizukami K, Oumi Y, Ito N, Kubo M, et al. Molecular dynamics simulation of iso- and n-butane permeations through a ZSM-5 type silicalite membrane. J Membr Sci 1997;134(1):127–39.
[8]
Hughes ZE, Gale JD. A computational investigation of the properties of a reverse osmosis membrane. J Mater Chem 2010;20(36):7788–99.
[9]
Kotelyanskii MJ, Wagner NJ, Paulaitis ME. Molecular dynamics simulation study of the mechanisms of water diffusion in a hydrated, amorphous polyamide. Comput Theor Polym Sci 1999;9(3–4):301–6.
[10]
Kotelyanskii MJ, Wagner NJ, Paulaitis ME. Atomistic simulation of water and salt transport in the reverse osmosis membrane FT-30. J Membr Sci 1998;139 (1):1–16.
[11]
Luo Y, Harder E, Faibish RS, Roux B. Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane. J Membr Sci 2011;384(1–2):1–9.
[12]
Ding MX, Szymczyk A, Ghoufi A. Hydration of a polyamide reverse-osmosis membrane. J Membr Sci 2016;501:248–53.
[13]
Gao WM, She FH, Zhang J, Dumée LF, He L, Hodgson PD, et al. Understanding water and ion transport behaviour and permeability through poly(amide) thin film composite membrane. J Membr Sci 2015;487:32–9.
[14]
Shen M, Keten S, Lueptow RM. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations. J Membr Sci 2016;506:95–108.
[15]
Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces. Chem Soc Rev 2010;39(3):1073–95.
[16]
Zhao Y, Zhang Z, Dai L, Mao H, Zhang S. Enhanced both water flux and salt rejection of reverse osmosis membrane through combining isophthaloyl dichloride with biphenyl tetraacyl chloride as organic phase monomer for seawater desalination. J Membr Sci 2017;522:175–82.
[17]
Song Y, Xu F, Wei M, Wang Y. Water flow inside polamide reverse osmosis membranes: a non-equilibrium molecular dynamics study. J Phys Chem B 2017;121(7):1715–22.
[18]
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 1995;117(1):1–19.
[19]
Sun H, Mumby SJ, Maple JR, Hagler AT. An ab initio CFF93 all-atom force field for polycarbonates. J Am Chem Soc 1994;116(7):2978–87.
[20]
Sun H. Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 1995;28(3):701–12.
[21]
Maple JR, Hwang MJ, Stockfisch TP, Dinur U, Waldman M, Ewig CS, et al. Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 1994;15 (2):162–82.
[22]
Zhang X, Cahill DG, Coronell O, Mariñas BJ. Absorption of water in the active layer of reverse osmosis membranes. J Membr Sci 2009;331(1–2):143–51.
[23]
Harder E, Walters DE, Bodnar YD, Faibish RS, Roux B. Molecular dynamics study of a polymeric reverse osmosis membrane. J Phys Chem B 2009;113 (30):10177–82.
[24]
Cohen-Tanugi D, Grossman JC. Water desalination across nanoporous graphene. Nano Lett 2012;12(7):3602–8.
[25]
Kalra A, Garde S, Hummer G. Osmotic water transport through carbon nanotube membranes. Proc Natl Acad Sci USA 2003;100(18):10175–80.
[26]
Wang L, Dumont RS, Dickson JM. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. J Chem Phys 2012;137(4):044102.
[27]
Richard R, Anthony S, Aziz G. Pressure-driven molecular dynamics simulations of water transport through a hydrophilic nanochannel. Mol Phys 2016;114 (18):2655–63.
[28]
Xu F, Song Y, Wei MJ, Wang Y. Water flow through interlayer channels of twodimensional materials with various hydrophilicities. J Phys Chem C 2018;122 (27):15772–9.
[29]
Ritos K, Mattia D, Calabrò F, Reese JM. Flow enhancement in nanotubes of different materials and lengths. J Chem Phys 2014;140(1):014702.
[30]
Borg MK, Lockerby DA, Reese JM. A hybrid molecular-continuum simulation method for incompressible flows in micro/nanofluidic networks. Microfluid Nanofluid 2013;15(4):541–57.
[31]
Ding M, Szymczyk A, Ghoufi A. On the structure and rejection of ions by a polyamide membrane in pressure-driven molecular dynamics simulations. Desalination 2015;368:76–80.
[32]
Liu B, Wu RB, Baimova JA, Wu H, Law AWK, Dmitriev SV, et al. Molecular dynamics study of pressure-driven water transport through graphene bilayers. Phys Chem Chem Phys 2016;18(3):1886–96.
[33]
Wei T, Zhang L, Zhao H, Ma H, Sajib MS, Jiang H, et al. Aromatic polyamide reverse-osmosis membrane: an atomistic molecular dynamics simulation. J Phys Chem B 2016;120(39):10311–8.
[34]
Sarkisov L, Harrison A. Computational structure characterisation tools in application to ordered and disordered porous materials. Mol Simul 2011;37 (15):1248–57.
[35]
Singh PS, Ray P, Xie Z, Hoang M. Synchrotron SAXS to probe cross-linked network of polyamide ‘reverse osmosis’ and ‘nanofiltration’ membranes. J Membr Sci 2012;421–422:51–9.
[36]
Yoon Y, Lueptow RM. Removal of organic contaminants by RO and NF membranes. J Membr Sci 2005;261(1–2):76–86.
[37]
Murad S, Nitsche LC. The effect of thickness, pore size and structure of a nanomembrane on the flux and selectivity in reverse osmosis separations: a molecular dynamics study. Chem Phys Lett 2004;397(1–3):211–5.
[38]
Kou J, Zhou X, Lu H, Wu F, Fan J. Graphyne as the membrane for water desalination. Nanoscale 2014;6(3):1865–70.
[39]
Nicholls WD, Borg MK, Lockerby DA, Reese JM. Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluid 2012;12(1–4):257–64.
[40]
Ghosh AK, Jeong BH, Huang XF, Hoek EMV. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J Membr Sci 2008;311(1–2):34–45.
[41]
Geise GM, Park HB, Sagle AC, Freeman BD, McGrath JE. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J Membr Sci 2011;369(1–2):130–8.
[42]
Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 2008;24(15):7663–73.
PDF(1351 KB)

Accesses

Citation

Detail

段落导航
相关文章

/