
利用深度学习系统筛查新冠病毒肺炎
Xiaowei Xu, Xiangao Jiang, Chunlian Ma, Peng Du, Xukun Li, Shuangzhi Lv, Liang Yu, Qin Ni, Yanfei Chen, Junwei Su, Guanjing Lang, Yongtao Li, Hong Zhao, Jun Liu, Kaijin Xu, Lingxiang Ruan, Jifang Sheng, Yunqing Qiu, Wei Wu, Tingbo Liang, Lanjuan Li
工程(英文) ›› 2020, Vol. 6 ›› Issue (10) : 1122-1129.
利用深度学习系统筛查新冠病毒肺炎
A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia
实时逆转录聚合酶链反应(RT-PCR)检测早期新冠病毒肺炎(COVID-19)患者的痰液或鼻咽拭子中的病毒RNA阳性率较低。同时,COVID-19的计算机断层扫描(CT)影像学的临床表现有其自身的特点,不同于甲型流感病毒性肺炎(IAVP)等其他类型的病毒性肺炎。本研究旨在应用深度学习技术,建立COVID-19、IAVP及健康人群肺部CT的早期筛查模型。本研究共采集618份CT样本,其中219份样本来自110例COVID-19患者(平均年龄50岁,其中男性63例,占57.3%),224份样本来自224例IAVP患者(平均年龄61岁,其中男性156例,占69.6%),175份样本来自健康人群(平均年龄39岁,其中男性97例,占55.4%)。所有CT样本均来自浙江省三家COVID-19定点收治医院。我们首先利用胸部CT图像集的三维(3D)深度学习模型分割出候选感染区域,然后利用位置敏感机制深度学习网络将这些分离的图像归类为COVID-19、IAVP以及与感染无关(ITI)的图像,并且输出相应置信度得分。最后,用Noisy-OR贝叶斯函数计算每份CT病例的感染类型及总置信度。测试数据集的实验结果表明,从整体CT病例来看,本研究利用深度学习系统建立的COVID-19患者的早期筛查模型的总体准确率为86.7%。该模型有望成为一线临床医生诊断COVID-19的一种有效的辅助方法。
The real-time reverse transcription-polymerase chain reaction (RT-PCR) detection of viral RNA from sputum or nasopharyngeal swab had a relatively low positive rate in the early stage of coronavirus disease 2019 (COVID-19). Meanwhile, the manifestations of COVID-19 as seen through computed tomography (CT) imaging show individual characteristics that differ from those of other types of viral pneumonia such as influenza-A viral pneumonia (IAVP). This study aimed to establish an early screening model to distinguish COVID-19 pneumonia from IAVP and healthy cases through pulmonary CT images using deep learning techniques. A total of 618 CT samples were collected: 219 samples from 110 patients with COVID-19 (mean age 50 years; 63 (57.3%) male patients); 224 samples from 224 patients with IAVP (mean age 61 years; 156 (69.6%) male patients); and 175 samples from 175 healthy cases (mean age 39 years; 97 (55.4%) male patients). All CT samples were contributed from three COVID-19-designated hospitals in Zhejiang Province, China. First, the candidate infection regions were segmented out from the pulmonary CT image set using a 3D deep learning model. These separated images were then categorized into the COVID-19, IAVP, and irrelevant to infection (ITI) groups, together with the corresponding confidence scores, using a location-attention classification model. Finally, the infection type and overall confidence score for each CT case were calculated using the Noisy-OR Bayesian function. The experimental result of the benchmark dataset showed that the overall accuracy rate was 86.7% in terms of all the CT cases taken together. The deep learning models established in this study were effective for the early screening of COVID-19 patients and were demonstrated to be a promising supplementary diagnostic method for frontline clinical doctors.
COVID-19 / 位置敏感机制深度学习网络 / 计算机断层扫描 /
Coronavirus disease 2019 pneumonia / COVID-19 / Location-attention classification model / Computed tomography
[1] |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382 (8):727–33.
|
[2] |
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020;382(13):1199–207.
|
[3] |
Cohen J, Normile D. New SARS-like virus in China triggers alarm. Science 2020;367(6475):234–5.
|
[4] |
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020;25(3):23–30.
|
[5] |
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395 (10223):497–506.
|
[6] |
Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-toperson transmission: a study of a family cluster. Lancet 2020;395 (10223):514–23.
|
[7] |
National Health Commission of the People’s Republic of China, National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7) [Internet]. Beijing: National Health Commission of the People’s Republic of China; [cited 2020 Mar 8]. Available from: http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a 7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8ce964.pdf. Chinese.
|
[8] |
Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections—the state of the art. Emerg Microbes Infect 2020;9 (1):747–56.
|
[9] |
Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020;323(18):1843–4.
|
[10] |
Zhang W, Du R, Li B, Zheng X, Yang X, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect 2020;9(1):386–9.
|
[11] |
Long Q, Deng H, Chen J, Hu J, Liu B, Liao P, et al. Antibody responses to SARSCoV-2 in COVID-19 patients: the perspective application of serological tests in clinical practice. 2020. medRxiv:2020.03.18.20038018.
|
[12] |
National Health Commission of the People’s Republic of China, National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 5) [Internet]. Beijing: National Health Commission of the People’s Republic of China; [cited 2020 Feb 5]. Available from: http://www.nhc.gov.cn/yzygj/s7653p/202002/ d4b895337e19445f8d728fcaf1e3e13a/files/ab6bec7f93e64e7f998d80299120 3cd6.pdf. Chinese.
|
[13] |
Liu X, Guo S, Yang B, Ma S, Zhang H, Li J, et al. Automatic organ segmentation for CT scans based on super-pixel and convolutional neural networks. J Digit Imaging 2018;31(5):748–60.
|
[14] |
Gharbi M, Chen J, Barron JT, Hasinoff SW, Durand F. Deep bilateral learning for real-time image enhancement. ACM Trans Graph 2017;36(4):118.
|
[15] |
Hesamian MH, Jia W, He X, Kennedy P. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 2019;32 (4):582–96.
|
[16] |
Akagi M, Nakamura Y, Higaki T, Narita K, Honda Y, Zhou J, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 2019;29(11):6163–71.
|
[17] |
Nardelli P, Jimenez-Carretero D, Bermejo-Pelaez D, Washko GR, Rahaghi FN, Ledesma-Carbayo MJ, et al. Pulmonary artery-vein classification in CT images using deep learning. IEEE Trans Med Imaging 2018;37(11):2428–40.
|
[18] |
Zhu W, Huang Y, Zeng L, Chen X, Liu Y, Qian Z, et al. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys 2019;46(2):576–89.
|
[19] |
Huang P, Park S, Yan R, Lee J, Chu LC, Lin CT, et al. Added value of computeraided CT image features for early lung cancer diagnosis with small pulmonary nodules: amatched case-control study. Radiology 2018;286(1):286–95.
|
[20] |
Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019;25(6):954–61.
|
[21] |
Esteva A, Kuprel B, NovoaR A, Ko J, Swetter SM, Blau HM, et al. Dermatologistlevel classification of skin cancer with deep neural networks. Nature 2017;542 (7639):115–8.
|
[22] |
Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284(2):574–82.
|
[23] |
Wu W, Li X, Du P, Lang G, Xu M, Xu K, et al. A deep learning system that generates quantitative CT reports for diagnosing pulmonary tuberculosis. 2019. arXiv:1910.02285v1.
|
[24] |
Li L, Huang H, Jin X. AE-CNN classification of pulmonary tuberculosis based on CT images. In: Proceedings of the 9th International Conference on Information Technology in Medicine and Education (ITME); 2018 Oct 19–21; Zhejiang, China. New York: IEEE; 2018.
|
[25] |
Onis´ko A, Druzdzel M, Wasyluk H. Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. Int J Approx Reason 2001;27(2):165–82.
|
[26] |
Milletari F, Navab N, Ahmadi SA. V-Net: fully convolutional neural networks for volumetric medical image segmentation. 2016. arXiv:1606.04797v1.
|
[27] |
Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, inception-resnet and the impact of residual connections on learning. 2016. arXiv:1602.07261.
|
[28] |
çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D u-net: learning dense volumetric segmentation from sparse annotation. 2016. arXiv: 1606.06650.
|
[29] |
Kanne JP. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist. Radiology 2020;295 (1):16–7.
|
[30] |
Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X. CT imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020;295(1):202–7.
|
[31] |
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2015. arXiv:1512.03385.
|
[32] |
Breiman L. Bagging predictors. Mach Learn 1996;24(2):123–40.
|
[33] |
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395(10223):470–3.
|
[34] |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382 (10):929–36.
|
[35] |
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507–13.
|
[36] |
Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis 2020;20(4):425–34.
|
/
〈 |
|
〉 |