肠道优势菌群丰度变化与COVID-19严重程度相关性的临床意义

Lingling Tang, Silan Gu, Yiwen Gong, Bo Li, Haifeng Lu, Qiang Li, Ruhong Zhang, Xiang Gao, Zhengjie Wu, Jiaying Zhang, Yuanyuan Zhang, Lanjuan Li

工程(英文) ›› 2020, Vol. 6 ›› Issue (10) : 1178-1184.

PDF(899 KB)
PDF(899 KB)
工程(英文) ›› 2020, Vol. 6 ›› Issue (10) : 1178-1184. DOI: 10.1016/j.eng.2020.05.013
研究论文
Article

肠道优势菌群丰度变化与COVID-19严重程度相关性的临床意义

作者信息 +

Clinical Significance of the Correlation between Changes in the Major Intestinal Bacteria Species and COVID-19 Severity

Author information +
History +

摘要

新冠病毒肺炎(COVID-19)是一种高度传染性疾病。与H7N9感染相似,COVID-19的典型临床表现是肺炎和细胞因子风暴。我们在既往研究中观察到H7N9患者存在肠道菌群失调。然而,肠道微生物菌群与COVID-19之间的关系尚未明确。本研究共纳入了57名COVID-19患者,其中包括20例普通型、19例重型以及18例危重型。本研究的目的是利用定量聚合酶链反应(q-PCR),研究COVID-19患者的10种主要肠道优势菌群的丰度变化,从而建立这些菌群与COVID-19临床指标之间的相关性。结果表明,COVID-19患者的10种主要肠道菌群丰度出现变化,这些肠道微生物菌群的变化与疾病严重程度和血液学指标有关。产丁酸菌,如普拉梭菌(Faecalibacterium prausnitzii)、酪酸梭菌(Clostridium butyricum)、柔嫩梭菌(Clostridium leptum)、直肠真杆菌(Eubacterium rectale)的丰度显著降低,细菌群落的这些变化有助于区分危重型与普通型和重型患者。此外,常见的条件致病菌肠球菌(Enterococcus, Ec)和肠杆菌科细菌(Enterobacteriaceae, E)的丰度在COVID-19患者中增加,尤其对于预后较差的危重型患者。这些结果表明,这些肠道优势菌群可作为COVID-19的诊断生物标志物,并且Ec/E值可用于预测危重型患者预后。

Abstract

Coronavirus disease 2019 (COVID-19) is a highly contagious infectious disease. Similar to H7N9 infection, pneumonia and cytokine storm are typical clinical manifestations of COVID-19. Our previous studies found that H7N9 patients had intestinal dysbiosis. However, the relationship between the gut microbiome and COVID-19 has not been determined. This study recruited a cohort of 57 patients with either general (n = 20), severe (n = 19), or critical (n = 18) disease. The objective of this study was to investigate changes in the abundance of ten predominant intestinal bacterial groups in COVID-19 patients using quantitative polymerase chain reaction (q-PCR), and to establish a correlation between these bacterial groups and clinical indicators of pneumonia in these patients. The results indicated that dysbiosis occurred in COVID-19 patients and changes in the gut microbial community were associated with disease severity and hematological parameters. The abundance of butyrate-producing bacteria, such as Faecalibacterium prausnitzii, Clostridium butyricum, Clostridium leptum, and Eubacterium rectale, decreased significantly, and this shift in bacterial community may help discriminate critical patients from general and severe patients. Moreover, the number of common opportunistic pathogens Enterococcus (Ec) and Enterobacteriaceae (E) increased, especially in critically ill patients with poor prognosis. The results suggest that these bacterial groups can serve as diagnostic biomarkers for COVID-19, and that the Ec/E ratio can be used to predict death in critically ill patients.

关键词

肠道菌群 / 新冠病毒肺炎(COVID-19) / 严重急性呼吸系统综合征冠状病毒2 (SARS-CoV-2)

Keywords

Intestinal microbiota / COVID-19 / SARS-CoV-2

引用本文

导出引用
Lingling Tang, Silan Gu, Yiwen Gong. 肠道优势菌群丰度变化与COVID-19严重程度相关性的临床意义. Engineering. 2020, 6(10): 1178-1184 https://doi.org/10.1016/j.eng.2020.05.013

参考文献

[1]
Lu H, Zhang C, Qian G, Hu X, Zhang H, Chen C, et al. An analysis of microbiotatargeted therapies in patients with avian influenza virus subtype H7N9 infection. BMC Infect Dis 2014;14:359.
[2]
Qin N, Zheng B, Yao J, Guo L, Zuo J, Wu L, et al. Influence of H7N9 virus infection and associated treatment on human gut microbiota. Sci Rep 2015;5(1):14771.
[3]
Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity 2017;46(4):562–76.
[4]
Sanaie S, Ebrahimi-Mameghani M, Hamishehkar H, Mojtahedzadeh M, Mahmoodpoor A. Effect of a multispecies probiotic on inflammatory markers in critically ill patients: a randomized, double-blind, placebo-controlled trial. J Res Med Sci 2014;19(9):827–33.
[5]
Hanada S, Pirzadeh M, Carver KY, Deng JC. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front Immunol 2018;9:2640.
[6]
Deitch EA. Gut-origin sepsis: evolution of a concept. Surgeon 2012;10 (6):350–6.
[7]
Zhou Q, Verne GN. Intestinal hyperpermeability: a gateway to multi-organ failure? J Clin Invest 2018;128(11):4764–6.
[8]
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Author correction: probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019;16(10):642.
[9]
Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of corona virus disease-19 (COVID-19): the Zhejiang experience. J Zhejiang Univ Med Sci 2020;49(1):147–57.
[10]
Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020;180(7):934–43.
[11]
National Health Commission of the People’s Republic of China, National Administration of Traditional Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (trail version 7) [Internet]. Beijing: The State Council of the People’s Republic of China; 2020 Mar 3 [cited 2020 Mar 12]. Available from: http:// www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989/ files/ce3e6945832a438eaae415350a8ce964.pdf. Chinese.
[12]
Declaration of Helsinki—recommendations guiding medical doctors in biomedical research involving human subjects [Internet]. Ferney-Voltaire: The World Medical Assembly; c2020 [adopted 1964 Jun; revised 1975 Oct; cited 2020 Mar 12]. Available from: https://www.wma.net/wp-content/ uploads/2018/07/DoH-Oct1975.pdf.
[13]
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464(7285):59–65.
[14]
D’Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta 2015;451(Pt A):97–102.
[15]
Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 2010;10(3):159–69.
[16]
O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7 (7):688–93.
[17]
Yu Q, Yuan L, Deng J, Yang Q. Lactobacillus protects the integrity of intestinal epithelial barrier damaged by pathogenic bacteria. Front Cell Infect Microbiol 2015;5:26.
[18]
Salazar N, Gueimonde M, de CG, Los Reyes-Gavilán, Ruas-Madiedo P. Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr 2016;56(9):1440–53.
[19]
Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des 2003;9(4):347–58.
[20]
Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrateproducing bacteria from the human large intestine. FEMS Microbiol Lett 2009;294(1):1–8.
[21]
Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 2015;8(1):80–93.
[22]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395(10229):1033–4.
[23]
Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg 1996;20(4):411–7.
[24]
Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016;535(7610):85–93.
[25]
Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycinresistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010;120(12):4332–41.
[26]
Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med 2012;4(137):137rv5.
[27]
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 2007;20(4):593–621.
[28]
Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016;165(6):1332–45.
[29]
Choi VM, Herrou J, Hecht AL, Teoh WP, Turner JR, Crosson S, et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat Med 2016;22(5):563–7.
[30]
Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol 2017;2(2):135–43.
[31]
Bartosch S, Fite A, Macfarlane GT, McMurdo ME. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Micro 2004;70(6):3575–81.
[32]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science 2020;367 (6485):1444–8.
[33]
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579(7798):270–3.
PDF(899 KB)

Accesses

Citation

Detail

段落导航
相关文章

/