
铝合金AA5182-O自冲摩擦铆焊与自冲铆接工艺比较研究
Yunwu Ma, He Shan, Sizhe Niu, Yongbing Li, Zhongqin Lin, Ninshu Ma
工程(英文) ›› 2021, Vol. 7 ›› Issue (12) : 1741-1750.
铝合金AA5182-O自冲摩擦铆焊与自冲铆接工艺比较研究
A Comparative Study of Friction Self-Piercing Riveting and Self-Piercing Riveting of Aluminum Alloy AA5182-O
本文分别采用自冲铆接(SPR)和自冲摩擦铆焊(F-SPR)工艺连接铝合金AA5182-O。从接头宏观形貌、铆接力、显微硬度分布、准静态力学性能和疲劳性能等方面对两个工艺进行了系统比较。研究结果表明,FSPR工艺不仅在铆钉与板材之间形成了机械互锁,而且还实现了固相连接;而SPR工艺仅实现了机械互
锁。F-SPR 工艺在摩擦热软化的作用下,获得相同机械互锁所需的铆接力比SPR工艺降低了63%。随着F-SPR 模式转换深度的降低,铆钉周围铝合金加工硬化程度增加。当模式转换深度小于3.0 mm时,FSPR接头比SPR接头具有更高的铝合金硬度。F-SPR 接头中的固相连接和较高的铝合金硬度有效提升了接头的刚度和抗剪切能力,从而使接头的准静态拉剪强度和疲劳寿命与SPR接头相比均有显著提升。
In this paper, self-piercing riveting (SPR) and friction self-piercing riveting (F-SPR) processes were employed to join aluminum alloy AA5182-O sheets. Parallel studies were carried out to compare the two processes in terms of joint macrogeometry, tooling force, microhardness, quasi-static mechanical performance, and fatigue behavior. The results indicate that the F-SPR process formed both rivet-sheet interlocking and sheet-sheet solid-state bonding, whereas the SPR process only contained rivet-sheet interlocking. For the same rivet flaring, the F-SPR process required 63% less tooling force than the SPR process because of the softening effect of frictional heat and the lower rivet hardness of F-SPR. The decrease in the switch depth of the F-SPR resulted in more hardening of the aluminum alloy surrounding the rivet. The higher hardness of aluminum and formation of solid-state bonding enhanced the F-SPR joint stiffness under lap-shear loading, which contributed to the higher quasi-static lap-shear strength and longer fatigue life compared to those of the SPR joints.
自冲铆接 / 自冲摩擦铆焊 / 机械连接 / 准静态强度 / 疲劳
Self-piercing riveting / Friction self-piercing riveting / Mechanical joining / Quasi-static strength / Fatigue
[1] |
Manladan SM, Yusof F, Ramesh S, Fadzil M, Luo Z, Ao S. A review on resistance spot welding of aluminum alloys. Int J Adv Manuf Technol 2017;90(1– 4):605–34.
|
[2] |
Luo Z, Ao S, Chao YJ, Cui X, Li Y, Lin Y. Application of pre-heating to improve the consistency and quality in AA5052 resistance spot welding. J Mater Eng Perform 2015;24(10):3881–91.
|
[3] |
Zohoori-Shoar V, Eslami A, Karimzadeh F, Abbasi-Baharanchi M. Resistance spot welding of ultrafine grained/nanostructured Al 6061 alloy produced by cryorolling process and evaluation of weldment properties. J Manuf Process 2017;26:84–93.
|
[4] |
Sigler DR, Carlson BE, Janiak P. Improving aluminum resistance spot welding in automotive structures. Weld J 2013;92(6):64–72.
|
[5] |
Deng L, Li Y, Carlson BE, Sigler DR. Effects of electrode surface topography on aluminum resistance spot welding. Weld J 2018;97(4):120–32.
|
[6] |
Trommer G. Resistance spot welding using continuous tape. Weld J 2009;88:12.
|
[7] |
Mori K, Abe Y, Kato T. Self-pierce riveting of multiple steel and aluminium alloy sheets. J Mater Process Technol 2014;214(10):2002–8.
|
[8] |
Jiang H, Gao S, Li G, Cui J. Structural design of half hollow rivet for electromagnetic self-piercing riveting process of dissimilar materials. Mater Des 2019;183:108141.
|
[9] |
Hirsch F, Müller S, Machens M, Staschko R, Fuchs N, Kästner M. Simulation of self-piercing rivetting processes in fibre reinforced polymers: material modelling and parameter identification. J Mater Process Technol 2017;241:164–77.
|
[10] |
Xu Y. Effects of factors on physical attributes of self-piercing riveted joints. Sci Technol Weld Join 2006;11(6):666–71.
|
[11] |
Huang H, Du D, Chang BH, Sui B, Chen Q. Distortion analysis for self-piercing riveting of aluminium alloy sheets. Sci Technol Weld Join 2007;12(1):73–8.
|
[12] |
Zhao L, He X, Xing B, Lu Y, Gu F, Ball A. Influence of sheet thickness on fatigue behavior and fretting of self-piercing riveted joints in aluminum alloy 5052. Mater Des 2015;87:1010–7.
|
[13] |
He X, Zhao L, Deng C, Xing B, Gu F, Ball A. Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy. Mater Des 2015;65:923–33.
|
[14] |
Zhang X, He X, Gu F, Ball A. Self-piercing riveting of aluminium–lithium alloy sheet materials. J Mater Process Technol 2019;268:192–200.
|
[15] |
Li D. Influence of aluminium sheet surface modification on the self-piercing riveting process and the joint static lap shear strength. Int J Adv Manuf Technol 2017;93(5–8):2685–95.
|
[16] |
Durandet Y, Deam R, Beer A, Song W, Blacket S. Laser assisted self-pierce riveting of AZ31 magnesium alloy strips. Mater Des 2010;31:S13–6.
|
[17] |
Wang JW, Liu ZX, Shang Y, Liu AL, Wang MX, Sun RN, et al. Self-piercing riveting of wrought magnesium AZ31 sheets. ASME J Manuf Sci Eng 2011;133 (3):031009.
|
[18] |
Jäckel M, Grimm T, Landgrebe D. Approaches for mechanical joining of 7xxx series aluminum alloys. AIP Conf Proc 2016;1769(1):100010.
|
[19] |
Li Y, Wei Z, Wang Z, Li Y. Friction self-piercing riveting of aluminum alloy AA6061-T6 to magnesium alloy AZ31B. ASME J Manuf Sci Eng 2013;135 (6):061007.
|
[20] |
Liu X, Lim YC, Li Y, Tang W, Ma Y, Feng Z, et al. Effects of process parameters on friction self-piercing riveting of dissimilar materials. J Mater Process Technol 2016;237:19–30.
|
[21] |
Ma Y, He G, Lou M, Li Y, Lin Z. Effects of process parameters on crack inhibition and mechanical interlocking in friction self-piercing riveting of aluminum alloy and magnesium alloy. ASME J Manuf Sci Eng 2018;140(10):101015.
|
[22] |
Huang Y, Huang T, Wan L, Meng X, Zhou L. Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints. J Mater Process Technol 2019;263:129–37.
|
[23] |
Huang Y, Meng X, Xie Y, Li J, Wan L. New technique of friction-based filling stacking joining for metal and polymer. Compos Part B Eng 2019;163:217–23.
|
[24] |
Meng X, Huang Y, Xie Y, Li J, Guan M, Wan L, et al. Friction self-riveting welding between polymer matrix composites and metals. Compos Part A Appl Sci Manuf 2019;127:105624.
|
[25] |
Haque R. Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review. Arch Civil Mech Eng 2018;18:83–93.
|
[26] |
Ma Y, Lou M, Li Y, Lin Z. Effect of rivet and die on self-piercing rivetability of AA6061-T6 and mild steel CR4 of different gauges. J Mater Process Technol 2018;251:282–94.
|
[27] |
Ma Y, Yang B, Lou M, Li Y, Ma N. Effect of mechanical and solid-state joining characteristics on tensile-shear performance of friction self-piercing riveted aluminum alloy AA7075-T6 joints. J Mater Process Technol 2020;278:116543.
|
[28] |
Li D, Han L, Thornton M, Shergold M. Influence of edge distance on quality and static behaviour of self-piercing riveted aluminium joints. Mater Des 2012;34:22–31.
|
[29] |
Li Y, Ma Y, Lou M, Lin Z, inventors; Shanghai Jiao Tong University, assignee. Rivet for friction self-piercing riveting and friction self-piercing riveting connection system thereof. US patent US 20190039119A1. 2019 Feb 7.
|
[30] |
Li D, Han L, Thornton M, Shergold M. Influence of rivet to sheet edge distance on fatigue strength of self-piercing riveted aluminium joints. Mater Sci Eng A 2012;558:242–52.
|
/
〈 |
|
〉 |