牙鲆50K SNP芯片的研制及其在抗病性状基因组选择中的应用

Qian Zhou, Ya-dong Chen, Sheng Lu, Yang Liu, Wen-teng Xu, Yang-zhen Li, Lei Wang, Na Wang, Ying-ming Yang, Song-lin Chen

工程(英文) ›› 2021, Vol. 7 ›› Issue (3) : 406-411.

PDF(689 KB)
PDF(689 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (3) : 406-411. DOI: 10.1016/j.eng.2020.06.017
研究论文
Article

牙鲆50K SNP芯片的研制及其在抗病性状基因组选择中的应用

作者信息 +

Development of a 50K SNP Array for Japanese Flounder and Its Application in Genomic Selection for Disease Resistance

Author information +
History +

摘要

单核苷酸多态性(SNP)芯片是一种强大的基因分型工具,用于遗传学研究和基因组选择(GS)育种。牙鲆是许多国家重要的经济养殖比目鱼品种。然而,高效基因分型工具的缺乏,严重阻碍了牙鲆基因组育种的进程。在本文中,我们研发了一款牙鲆50K“鱼芯1号”SNP芯片,并将其应用于抗病基因组选择。利用Affymetrix Axiom基因分型技术,我们从1099个个体的全基因组重测序数据中获得了超过4220万个SNP,从中选择了在基因组中均匀分布的48 697个SNP,研制成“鱼芯1号”SNP芯片。利用168个牙鲆个体对“鱼芯1号”芯片的分型效果进行了评价,结果表明,检出率(call rate, CR)高于98%的SNP位点占74.7%,多态性SNP位点具有较好的等位基因分离效果,并且85%以上的SNP与基于全基因组重测序数据获得的SNP一致。为了验证“鱼芯1号”芯片在基因组选择方面的应用效果,利用候选群体的27个个体和参考群体的931个个体的基因分型数据,计算了抗迟缓爱德华氏菌病性状的基因组估计育种值(GEBV)。与传统的基于系谱的最佳线性无偏预测(ABLUP)相比,加权基因组最佳线性无偏预测(wGBLUP)的预测准确性提高了21.2%,说明“鱼芯1号”芯片在基因组选择中的应用效果良好。综上所述,本文研制的牙鲆50K“鱼芯1号”芯片,为高质量的基因分型提供了一个有效的工具,推动了基于基因组选择的牙鲆抗病良种选育进程。

Abstract

Single nucleotide polymorphism (SNP) arrays are a powerful genotyping tool used in genetic research and genomic breeding programs. Japanese flounder (Paralichthys olivaceus) is an economically-important aquaculture flatfish in many countries. However, the lack of high-efficient genotyping tools has impeded the genomic breeding programs for Japanese flounder. We developed a 50K Japanese flounder SNP array, ″Yuxin No. 1,″ and report its utility in genomic selection (GS) for disease resistance to bacterial pathogens. We screened more than 42.2 million SNPs from the whole-genome resequencing data of 1099 individuals and selected 48 697 SNPs that were evenly distributed across the genome to anchor the array with Affymetrix Axiom genotyping technology. Evaluation of the array performance with 168 fish showed that 74.7% of the loci were successfully genotyped with high call rates (> 98%) and that the polymorphic SNPs had good cluster separations. More than 85% of the SNPs were concordant with SNPs obtained from the whole-genome resequencing data. To validate ″Yuxin No. 1″ for GS, the arrayed genotyping data of 27 individuals from a candidate population and 931 individuals from a reference population were used to calculate the genomic estimated breeding values (GEBVs) for disease resistance to Edwardsiella tarda. There was a 21.2% relative increase in the accuracy of GEBV using the weighted genomic best linear unbiased prediction (wGBLUP), compared to traditional pedigree-based best linear unbiased prediction (ABLUP), suggesting good performance of the ″Yuxin No. 1″ SNP array for GS. In summary, we developed the ″Yuxin No. 1″ 50K SNP array, which provides a useful platform for high-quality genotyping that may be beneficial to the genomic selective breeding of Japanese flounder.

关键词

牙鲆 / 单核苷酸多态性 / SNP芯片 / 抗病性 / 基因组选择 /

引用本文

导出引用
Qian Zhou, Ya-dong Chen, Sheng Lu. 牙鲆50K SNP芯片的研制及其在抗病性状基因组选择中的应用. Engineering. 2021, 7(3): 406-411 https://doi.org/10.1016/j.eng.2020.06.017

参考文献

[1]
Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001;157(4):1819–29.
[2]
Pryce JE, Goddard ME, Raadsma HW, Hayes BJ. Deterministic models of breeding scheme designs that incorporate genomic selection. J Dairy Sci 2010;93(11):5455–66.
[3]
Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, et al. Development and characterization of a high density SNP genotyping assay for cattle. PLoS ONE 2009;4(4):e5350.
[4]
Chen SL, Xu WT, Liu Y. Fish genomic research: decade review and prospect. J Fish China 2019;43:1–14 Chinese.
[5]
Houston RD, Taggart JB, Cézard T, Bekaert M, Lowe NR, Downing A, et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics 2014;15(1):90.
[6]
Poc´wierz-Kotus A, Bernas´ R, Kent MP, Lien S, Leliuna E, De } ˛bowski P, et al. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array. Genet Sel Evol 2015;47(1):39.
[7]
Xu J, Zhao ZX, Zhang XF, Zheng XH, Li JT, Jiang YL, et al. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genomics 2014;15(1):307.
[8]
Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, et al. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Mol Ecol Resour 2015;15(3):662–72.
[9]
Zeng QF, Fu Q, Li Y, Waldbieser G, Bosworth B, Liu S, et al. Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence. Sci Rep 2017;7(1):40347.
[10]
Fuji K, Hasegawa O, Honda K, Kumasaka K, Sakamoto T, Okamoto N. Markerassisted breeding of a lymphocystis disease-resistant Japanese flounder (Paralichthys olivaceus). Aquaculture 2007;272(1–4):291–5.
[11]
Shao CW, Niu YC, Rastas P, Liu Y, Xie ZY, Li HD, et al. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res 2015;22(2):161–70.
[12]
Robledo D, Gutiérrez AP, Barría A, Lhorente JP, Houston RD, Yáñez JM. Discovery and functional annotation of quantitative trait loci affecting resistance to sea lice in Atlantic salmon. Front Genet 2019;10:56.
[13]
Zhou Q, Su ZC, Li YZ, Liu Y, Wang L, Lu S, et al. Genome-wide association mapping and gene expression analyses reveal genetic mechanisms of disease resistance variations in Cynoglossus semilaevis. Front Genet 2019;10:1167.
[14]
Shao CW, Bao BL, Xie ZY, Chen XY, Li B, Jia XD, et al. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 2017;49(1):119–24.
[15]
Liu Y, Lu S, Liu F, Shao CW, Zhou Q, Wang N, et al. Genomic selection using BayesCp and GBLUP for resistance against Edwardsiella tarda in Japanese flounder (Paralichthys olivaceus). Mar Biotechnol 2018;20(5):559–65.
[16]
Zhou Q, Su XQ, Wang AH, Xu J, Ning K. QC-Chain: fast and holistic quality control method for next-generation sequencing data. PLoS ONE 2013;8(4): e60234.
[17]
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009;25(14):1754–60.
[18]
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20 (9):1297–303.
[19]
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81(3):559–75.
[20]
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics 2011;27(15):2156–8.
[21]
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila–melanogaster strain w1118; iso-2; iso3. Fly 2012;6(2):80–92.
[22]
Gao H, Pirani A, Webster T, Shen MM, inventors; Affymetrix, Inc., assignee. Systems and methods for SNP characterization and identifying off target variants. United States patent US 20140274749. 2014 Sep 18.
[23]
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.
[24]
Zhang XY, Lourenco D, Aguilar I, Legarra A, Misztal I. Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Front Genet 2016;7:151.
[25]
Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res 2012;94(2):73–83.
[26]
Gilmour ARGB, Gogel B, Cullis BR, Thompson R. ASReml user guide release 3.0. Hemel Hempstead: VSN International Ltd; 2009.
[27]
Wray NR, Yang J, Goddard ME, Visscher PM. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet 2010;6(2): e1000864.
[28]
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinf 2011;12(1):77.
[29]
Lindgren D, Höglund M, Vallon-Christersson J. Genotyping techniques to address diversity in tumors. Adv Cancer Res 2011;112:151–82.
[30]
Bangera R, Correa K, Lhorente JP, Figueroa R, Yáñez JM. Genomic predictions can accelerate selection for resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). BMC Genomics 2017;18(1):121.
[31]
Odegård J, Moen T, Santi N, Korsvoll SA, Kjøglum S, Meuwissen THE. Genomic prediction in an admixed population of Atlantic salmon (Salmo salar). Front Genet 2014;5:402.
[32]
Palaiokostas C, Cariou S, Bestin A, Bruant JS, Haffray P, Morin T, et al. Genomewide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol 2018;50(1):30.
[34]
Zhang Y, Liu Z, Li H. Genomic prediction of columnaris disease resistance in catfish. Mar Biotechnol 2020;22(1):145–51.
PDF(689 KB)

Accesses

Citation

Detail

段落导航
相关文章

/