面向大幅面金属增材抛光的激光扫描振镜与伺服台协同控制系统
崔梦嘉 , 卢立斌 , 张震 , 管迎春
工程(英文) ›› 2021, Vol. 7 ›› Issue (12) : 1732 -1740.
面向大幅面金属增材抛光的激光扫描振镜与伺服台协同控制系统
A Laser Scanner–Stage Synchronized System Supporting the Large-Area Precision Polishing of Additive-Manufactured Metallic Surfaces
为了满足高品质金属增材制造的迫切需求,本文创新地提出了一种以激光扫描振镜与精密伺服台协同控制为核心的大幅面激光精密抛光方法,以实现大幅面选区激光熔化(SLM)成形镍合金精密抛光。我们提出的协同控制系统主要包括主从式新型协同控制架构、运动矢量分解和误差合成等核心模块。研究实验结果表明,与传统步进-扫描方法相比,该协同控制系统实现了激光光斑连续运动,避免了拼接误差,加工效率提升了38.24%。由于激光扫描路径更流畅,相应能量分布更均匀,因此,大幅面抛光质量得到显著改善。本协同系统为大幅面、高精度、高效率的激光精密加工提供了重要途径,在航空航天、新能源、高端模具、医疗器械等精密制造领域具有广阔的应用前景。
This paper proposes a scanner–stage synchronized approach emphasizing a novel control structure for the laser polishing of Inconel 718 components manufactured by selective laser melting in order to address increasing demands for high surface quality in metal additive manufacturing. The proposed synchronized control system is composed of a motion decomposition module and an error synthesis module. The experimental results show that stitching errors can be avoided thanks to continuous motion during laser processing. Moreover, in comparison with the existing step-scan method, the processing efficiency of the proposed method is improved by 38.22% and the surface quality of the laser-polished area is significantly enhanced due to a more homogeneous distribution of the laser energy during the material phase change. The proposed synchronized system paves the way for high-speed, high-precision, and large-area laser material processing without stitching errors.
协同控制 / 激光制造 / 拼接误差 / 激光抛光 / 大幅面
Laser polishing / Stitching errors / Synchronized control system / Additive manufacturing
| Method | Average Ra (µm) | Ra of boundary area (µm) | Polishing time (s) |
|---|---|---|---|
| Initial | 3.67 | 3.67 | ‒ |
| Step-scan | 1.14 | 1.72 | 68.95 |
| Scanner-stage | 0.82 | 0.85 | 41.98 |
| [1] |
Bordatchev EV, Hafiz AMK, Tutunea-Fatan OR. Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 2014;73(1–4):35–52. |
| [2] |
Ma C, Guan Y, Zhou W. Laser surface processing of hot rolled Ni–45.0 at.% Ti shape memory alloy. J Laser Micro Nanoeng 2017;12(1):6–9. |
| [3] |
Chen Y, Tsai W, Liu S, Horng J. Picosecond laser pulse polishing of ASP23 steel. Opt Laser Technol 2018;107:180–5. |
| [4] |
Li N, Huang S, Zhang G, Qin R, Liu W, Xiong H, et al. Progress in additive manufacturing on new materials: a review. J Mater Sci Technol 2019;35 (2):242–69. |
| [5] |
Nie P, Ojo OA, Li Z. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater 2014;77:85–95. |
| [6] |
Wang C, Yang L, Hu Y, Rao S, Wang Y, Pan D, et al. Femtosecond Mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects. ACS Nano 2019;13(4):4667–76. |
| [7] |
Hu Y, Rao S, Wu S, Wei P, Qiu W, Wu D, et al. All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv Opt Mater 2018;6(9):1701299–307. |
| [8] |
Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 2016;83(1– 4):389–405. |
| [9] |
Ma CP, Guan YC, Zhou W. Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 2017;93:171–7. |
| [10] |
Rosa B, Mognol P, Hascoët J. Laser polishing of additive laser manufacturing surfaces. J Laser Appl 2015;27(S2):S29102. |
| [11] |
Li YH, Wang B, Ma CP, Fang ZH, Chen LF, Guan YC, et al. Material characterization, thermal analysis, and mechanical performance of a laserpolished Ti alloy prepared by selective laser melting. Metals 2019;9(2):112. |
| [12] |
Penchev P, Dimov S, Bhaduri D, Soo SL, Crickboom B. Generic software tool for counteracting the dynamics effects of optical beam delivery systems. Proc Inst Mech Eng Pt B J Eng Manuf 2017;231(1):48–64. |
| [13] |
Ai J, Lv M, Jiang M, Liu J, Zeng X. Focused laser lithographic system for efficient and cross-scale fabrication of large-area and 3D micro-patterns. Opt Lasers Eng 2018;107:335–41. |
| [14] |
Delgado MAO, Lasagni AF. Reducing field distortion for galvanometer scanning system using a vision system. Opt Lasers Eng 2016;86:106–14. |
| [15] |
Yoon K, Kim K, Lee J. One-axis on-the-fly laser system development for widearea fabrication using cell decomposition. Int J Adv Manuf Technol 2014;75:1681–90. |
| [16] |
Martínez S, Lamikiz A, Tabernero I, Ukar E. Laser hardening process with 2D scanning optics. Phys Procedia 2012;39:309–17. |
| [17] |
Jolliffe C, Schlüter H, Kirshenboim Z. Combined galvanometer scanners and motion platforms over standard industrial ethernet networks. In: Proceedings of the 19th International Symposium on Laser Precision Microfabrication; 2018 June 25–28; Edinburgh, UK; 2018. p. 1–6. |
| [18] |
Yoon K. Development of a path generation algorithm for large-area laser patterning using a manual-input control-point. J Laser Micro Nanoeng 2015;10 (2):234–40. |
| [19] |
Hu G, Guan K, Lu L, Zhang J, Lu N, Guan Y. Engineered functional surfaces by laser microprocessing for biomedical applications. Engineering 2018;4 (6):822–30. |
| [20] |
Wang X, Zheng H, Wan Y, Feng W, Lam YC. Picosecond laser surface texturing of a Stavax steel substrate for wettability control. Engineering 2018;4 (6):816–21. |
| [21] |
Lu L, Zhang Z, Guan Y, Zheng H. Enhancement of heat dissipation by laser micro structuring for LED module. Polymers 2018;10(8):886. |
| [22] |
Lim TW, Son Y, Yang DY, Kong HJ, Lee KS, Park SH. Highly effective threedimensional large-scale microfabrication using a continuous scanning method. Appl Phys A Mater Sci Process 2008;92(3):541–5. |
| [23] |
Jonušauskas L, Gailevicˇius D, Rekštyte˙ S, Juodkazis S, Malinauskas M. Synchronization of linear stages and galvo-scanners for efficient direct laser fabrication of polymeric 3D meso-scale structures. In: Proceedings of the Conference on Laser 3D Manufacturing; 2018 Jan 27–Feb 1; San Francisco, CA, USA; 2018. |
| [24] |
Zhang Z, Yan P, Hao G. A large range flexure-based servo system supporting precision additive manufacturing. Engineering 2017;3(5):708–15. |
| [25] |
Heertjes M, Temizer B, Schneiders M. Self-tuning in master–slave synchronization of high-precision stage systems. Control Eng Pract 2013;21 (12):1706–15. |
| [26] |
Li Y, Arthanari S, Guan Y. Influence of laser surface melting on the properties of MB26 and AZ80 magnesium alloys. Surf Coat Technol 2019;378:124964. |
| [27] |
He X, Elmer JW, DebRoy T. Heat transfer and fluid flow in laser microwelding. J Appl Phys 2005;97(8):084909. |
| [28] |
Anderson MJ, Panwisawas C, Sovani Y, Turner RP, Brooks JW, Basoalto HC. Mean-field modelling of the intermetallic precipitate phases during heat treatment and additive manufacture of Inconel 718. Acta Mater 2018;156: 432–45. |
| [29] |
Guan YC, Zhou W, Li ZL, Zheng HY. Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy. Mater Des 2013;52:452–8. |
| [30] |
Ukar E, Lamikiz A, Liébana F, Martínez S, Tabernero I. An industrial approach of laser polishing with different laser sources. Mater Werkst 2015;46(7):661–7. |
()
/
| 〈 |
|
〉 |