
基于极限学习机的电动汽车锂离子动力电池外部短路热模型研究
Ruixin Yang, Rui Xiong, Weixiang Shen, Xinfan Lin
工程(英文) ›› 2021, Vol. 7 ›› Issue (3) : 395-405.
基于极限学习机的电动汽车锂离子动力电池外部短路热模型研究
Extreme Learning Machine-Based Thermal Model for Lithium-Ion Batteries of Electric Vehicles under External Short Circuit
锂离子动力电池外部短路(ESC)是电动汽车常见且严重的电气故障之一。为此,本文提出了一种新型电池热模型以准确刻画动力电池外部短路发生后的温度行为。主要工作如下:在不同电池荷电状态和环境温度下,设计并系统地开展了动力电池外部短路实验;为保证模型参数的物理意义和模型的精准性,利用集总参数热模型替换经典极限学习机中的激活函数,构建了基于极限学习机的电池热(ELMT)模型,实现了模型无需迭代调节参数和模型参数就可以具备物理属性的双重优势,极大提高了模型计算效率与准确度;为了评估模型改进的必要性,比较了极限学习机热模型与遗传算法参数化的多集总参数热(MLT)模型。结果表明,ELMT模型相比MLT模型具有更优异的计算效率以及拟合、预测精度。其中,ELMT模型拟合和预测电池温度的均方根误差分别为0.65 ℃和3.95 ℃,MLT模型拟合和预测电池温度的均方根误差分别为3.97 ℃和6.11 ℃。
External short circuit (ESC) of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles. In this study, a novel thermal model is developed to capture the temperature behavior of batteries under ESC conditions. Experiments were systematically performed under different battery initial state of charge and ambient temperatures. Based on the experimental results, we employed an extreme learning machine (ELM)-based thermal (ELMT) model to depict battery temperature behavior under ESC, where a lumped-state thermal model was used to replace the activation function of conventional ELMs. To demonstrate the effectiveness of the proposed model, we compared the ELMT model with a multi-lumped-state thermal (MLT) model parameterized by the genetic algorithm using the experimental data from various sets of battery cells. It is shown that the ELMT model can achieve higher computational efficiency than the MLT model and better fitting and prediction accuracy, where the average root mean squared error (RMSE) of the fitting is 0.65 °C for the ELMT model and 3.95 °C for the MLT model, and the RMES of the prediction under new data set is 3.97 °C for the ELMT model and 6.11 °C for the MLT model.
电动汽车 / 电池安全 / 外部短路 / 温升预测 / 极限学习机
Electric vehicles / Battery safety / External short circuit / Temperature prediction / Extreme learning machine
[1] |
Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manage 2019;182:262–81.
|
[2] |
Xiong R, Ma S, Li H, Sun F, Li Ju. Toward a safer battery management system: a critical review on diagnosis and prognosis of battery short circuit. iScience 2020;23(4):101010.
|
[3] |
Xiong R, Pan Y, Shen W, Li H, Sun F. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives. Renew Sustain Energy Rev 2020;131:110048.
|
[4] |
Lin X, Perez HE, Siegel JB, Stefanopoulou AG. Robust estimation of battery system temperature distribution under sparse sensing and uncertainty. IEEE Trans Contr Syst Technol 2020;28(3):753–65.
|
[5] |
Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng 2019;149:192–212.
|
[6] |
Kong L, Li C, Jiang J, Pecht MG. Li-ion battery fire hazards and safety strategies. Energies 2018;11(9):2191.
|
[7] |
Finegan D, Darst J, Walker W, Li Q, Yang C, Jervis R, et al. Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells. J Power Sources 2019;417:29–41.
|
[8] |
Waldmann T, Hogg BI, Wohlfahrt-Mehrens M. Li plating as unwanted side reaction in commercial Li-ion cells—a review. J Power Sources 2018;384:107–24.
|
[9] |
Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater 2018;10:246–67.
|
[10] |
Ren D, Feng X, Lu L, Ouyang M, Zheng S, Li J, et al. An electrochemical–thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J Power Sources 2017;364:328–40.
|
[11] |
Zhao W, Luo G, Wang CY. Modeling nail penetration process in large-format Liion cells. J Electrochem Soc 2015;162(1):A207–17.
|
[12] |
Chen M, Bai F, Song W, Lv J, Lin S, Feng Z, et al. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process. Appl Therm Eng 2017;120:506–16.
|
[13] |
Zhu X, Wang Z, Wang Y, Wang H, Wang C, Tong L, et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: thermal runaway features and safety management method. Energy 2019;169:868–80.
|
[14] |
Rheinfeld A, Noel A, Wilhelm J, Kriston A, Pfrang A, Jossen A. Quasi-isothermal external short circuit tests applied to lithium-ion cells: part I. measurements. J Electrochem Soc 2018;165(14):A3427–48.
|
[15] |
Rheinfeld A, Sturm J, Noel A, Wilhelm J, Kriston A, Pfrang A, et al. Quasiisothermal external short circuit tests applied to lithium-ion cells: part II. modeling and simulation. J Electrochem Soc 2019;166(2):A151–77.
|
[16] |
Dong T, Wang Y, Peng P, Jiang F. Electrical-thermal behaviors of a cylindrical graphite-NCA Li-ion battery responding to external short circuit operation. Int J Energy Res 2019;43(4):1444–59.
|
[17] |
Kriston A, Pfrang A, Döring H, Fritsch B, Ruiz V, Adanouj I, et al. External short circuit performance of graphite-LiNi1/3Co1/3Mn1/3O2 and graphiteLiNi0.8Co0.15Al0.05O2 cells at different external resistances. J Power Sources 2017;361:170–81.
|
[18] |
Kupper C, Spitznagel S, Döring H, Danzer MA, Gutierrez C, Kvasha A, et al. Combined modeling and experimental study of the high-temperature behavior of a lithium-ion cell: differential scanning calorimetry, accelerating rate calorimetry and external short circuit. Electrochim Acta 2019;306:209–19.
|
[19] |
Yang R, Xiong R, He H, Chen Z. A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application. J Clean Prod 2018;187:950–9.
|
[20] |
Xiong R, Yang R, Chen Z, Shen W, Sun F. Online fault diagnosis of external short circuit for lithium-ion battery pack. IEEE Trans Ind Electron 2020;67 (2):1081–91.
|
[21] |
Yang R, Xiong R, Ma S, Lin X. Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks. Appl Energy 2020;260:114253.
|
[22] |
Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc 1985;132(1):5–12.
|
[23] |
Marcicki J, Zhu M, Bartlett A, Yang XG, Chen Y, Miller T, et al. A simulation framework for battery cell impact safety modeling using LS-DYNA. J Electrochem Soc 2017;164(1):A6440–8.
|
[24] |
Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and applications. Neurocomputing 2006;70(1–3):489–501.
|
[25] |
Huang G, Huang GB, Song S, You K. Trends in extreme learning machines: a review. Neural Netw 2015;61:32–48.
|
[26] |
Razavi-Far R, Chakrabarti S, Saif M, Zio E, Palade V. Extreme learning machine based prognostics of battery life. Int J Artif Intell Tools 2018;27 (8):1850036.
|
[27] |
Tang X, Yao K, Liu B, Hu W, Gao F. Long-term battery voltage, power, and surface temperature prediction using a model-based extreme learning machine. Energies 2018;11(1):86.
|
[28] |
Liu Z, Li HX. Extreme learning machine based spatiotemporal modeling of lithium-ion battery thermal dynamics. J Power Sources 2015;277: 228–38.
|
[29] |
Yang R, Xiong R, He H, Mu H, Wang C. A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles. Appl Energy 2017;207:336–45.
|
[30] |
Feng X, Weng C, Ouyang M, Sun J. Online internal short circuit detection for a large format lithium ion battery. Appl Energy 2016;161:168–80.
|
/
〈 |
|
〉 |