
基于开关型活性Al2O3纳米颗粒稳定的新型CO2/N2响应型Pickering乳液
An Chen, Duo Wang, Jingsi Chen, Jianhong Xu, Hongbo Zeng
工程(英文) ›› 2022, Vol. 12 ›› Issue (5) : 48-54.
基于开关型活性Al2O3纳米颗粒稳定的新型CO2/N2响应型Pickering乳液
A CO2/N2-Responsive Pickering Emulsion Stabilized by Novel Switchable Surface-Active Alumina Nanoparticles
本文报道了一种新型开关型Pickering乳液,这种乳液具有快速的CO2/N2响应能力,可以通过静电作用使氧化铝纳米颗粒与微量的开关型超亲合剂进行原位疏水稳定。在引入CO2 30 s 后,Pickering乳液可以自发地破乳化,并实现完全的相分离;然后乳液可以在N2吹扫10 min后的均质化过程中得到重构。此外,稳定的Pickering乳液可以在室温下储存60 d以上而没有任何可见的变化。开关型Pickering乳液的CO2/N2响应行为归因于在CO2或N2交替鼓泡时,开关型表面活性剂在氧化铝纳米颗粒表面的可逆的解吸/吸附。由于表面活性剂的制造简便性和氧化铝纳米颗粒的疏水性,本研究开发了一种极其简便且具有成本效益的方法,用于制备可快速响应CO2/N2的开关型Pickering 乳液。与以前的研究中使用的剂量相比,开关型表面活性剂的剂量显著减少为原来的1/1500(从150 mmol∙L−1减少到0.1 mmol∙L−1)。此外,所制备的具有CO2/N2响应能力的开关型Pickering乳液对环境友好、温和、无毒;因此,该乳液具有巨大的实际应用潜力,并且具有可观的经济和环境效益,可应用于石油运输、化石燃料生产、环境气体检测以及活性成分的封装和释放。
This article reports the development of a novel switchable Pickering emulsion with rapid CO2/N2 responsiveness, which is stabilized using alumina nanoparticles hydrophobized in situ with a trace amount of a switchable superamphiphile via electrostatic interactions. With the introduction of CO2 for 30 s, the Pickering emulsion can be spontaneously demulsified with complete phase separation; the emulsion can then be reconstructed in response to N2 purging for 10 min followed by homogenization. Moreover, the stable Pickering emulsion can be stored for more than 60 days at room temperature without any visible change. The CO2/N2-responsive behavior of the switchable Pickering emulsion is attributed to the reversible desorption/adsorption of the switchable surfactants on the surfaces of the alumina nanoparticles upon the alternative bubbling of CO2 or N2. Thanks to the simple fabrication of the surfactant and the hydrophobization of the alumina nanoparticles, this research has developed an extremely facile and cost-efficient method for preparing a rapidly CO2/N2-responsive switchable Pickering emulsion. The dosage of the switchable surfactants has been significantly reduced by nearly 1500 times (from 150 to 0.1 mmol∙L−1) as compared with the dosage used in previous studies. Moreover, the as-prepared CO2/N2-responsive switchable Pickering emulsion is environmentally friendly, mild, and nontoxic; thus, it holds great potential for practical applications with considerable economic and environmental benefits, such as oil transport, fossil fuel production, environmental gases detection, and the encapsulation and release of active ingredients.
CO2/N2刺激响应 / Pickering乳液 / 开关型表面活性剂 / 氧化铝纳米颗粒 / 超两亲化合物
CO2/N2 responsive / Pickering emulsion / Switchable surfactant / Alumina nanoparticles / Superamphiphile
[1] |
Martínez-Palou R, Reyes J, Cerón-Camacho R, Ramírez-de-Santiago M, Villanueva D, Vallejo AA, et al. Study of the formation and breaking of extraheavy-crude-oil-in-water emulsions—a proposed strategy for transporting extra heavy crude oils. Chem Eng Process 2015;98:112–22.
|
[2] |
Liang C, Harjani JR, Robert T, Rogel E, Kuehne D, Ovalles C, et al. Use of CO2- triggered switchable surfactants for the stabilization of oil-in-water emulsions. Energy Fuels 2012;26(1):488–94.
|
[3] |
Li Y, Zhu L, Grishkewich N, Tam KC, Yuan J, Mao Z, et al. CO2-responsive cellulose nanofibers aerogels for switchable oil–water separation. ACS Appl Mater Interfaces 2019;11(9):9367–73.
|
[4] |
Chu Z, Feng Y. pH-switchable wormlike micelles. Chem Commun 2010;46 (47):9028–30.
|
[5] |
Liu K, Jiang J, Cui Z, Binks BP. pH-responsive Pickering emulsions stabilized by silica nanoparticles in combination with a conventional zwitterionic surfactant. Langmuir 2017;33(9):2296–305.
|
[6] |
Yang H, Zhou T, Zhang W. A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion. Angew Chem Int Ed Engl 2013;52(29):7455–9.
|
[7] |
Feng H, Verstappen NAL, Kuehne AJC, Sprakel J. Well-defined temperaturesensitive surfactants for controlled emulsion coalescence. Polym Chem 2013;4 (6):1842–7.
|
[8] |
Zhang W, Liu N, Zhang Q, Qu R, Liu Y, Li X, et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability. Angew Chem Int Ed Engl 2018;57(20):5740–5.
|
[9] |
Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL. Switchable surfactants. Science 2006;313(5789):958–60.
|
[10] |
Jiang J, Ma Y, Cui Z, Binks BP. Pickering emulsions responsive to CO2/N2 and light dual stimuli at ambient temperature. Langmuir 2016;32(34):8668–75.
|
[11] |
Xu P, Wang Z, Xu Z, Hao J, Sun D. Highly effective emulsification/ demulsification with a CO2-switchable superamphiphile. J Colloid Interface Sci 2016;480:198–204.
|
[12] |
Chen X, Ma X, Yan C, Sun D, Yeung T, Xu Z. CO2-responsive O/W microemulsions prepared using a switchable superamphiphile assembled by electrostatic interactions. J Colloid Interface Sci 2019;534:595–604.
|
[13] |
Wang Z, Ren G, Yang J, Xu Z, Sun D. CO2-responsive aqueous foams stabilized by pseudogemini surfactants. J Colloid Interface Sci 2019;536:381–8.
|
[14] |
Khoukh S, Oda R, Labrot T, Perrin P, Tribet C. Light-responsive hydrophobic association of azobenzene-modified poly(acrylic acid) with neutral surfactants. Langmuir 2007;23(1):94–104.
|
[15] |
Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant. Langmuir 2014;30(1):41–7.
|
[16] |
Brown P, Bushmelev A, Butts CP, Cheng J, Eastoe J, Grillo I, et al. Magnetic control over liquid surface properties with responsive surfactants. Angew Chem Int Ed Engl 2012;51(10):2414–6.
|
[17] |
Yang H, Hou Q, Wang S, Guo D, Hu G, Xu Y, et al. Magnetic-responsive switchable emulsions based on Fe3O4@SiO2–NH2 nanoparticles. Chem Commun 2018;54(76):10679–82.
|
[18] |
Kong W, Guo S, Wu S, Liu X, Zhang Y. Redox-controllable interfacial properties of zwitterionic surfactant featuring selenium atoms. Langmuir 2016;32 (38):9846–53.
|
[19] |
Tsuchiya K, Orihara Y, Kondo Y, Yoshino N, Ohkubo T, Sakai H, et al. Control of viscoelasticity using redox reaction. J Am Chem Soc 2004;126(39):12282–3.
|
[20] |
Rahman MM, Chehimi MM, Fessi H, Elaissari A. Highly temperature responsive core–shell magnetic particles: synthesis, characterization and colloidal properties. J Colloid Interface Sci 2011;360(2):556–64.
|
[21] |
Tang J, Lee MFX, Zhang W, Zhao B, Berry RM, Tam KC. Dual responsive Pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 2014;15(8):3052–60.
|
[22] |
Yi C, Liu N, Zheng J, Jiang J, Liu X. Dual-responsive poly(styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide) micelles as switchable emulsifiers. J Colloid Interface Sci 2012;380(1):90–8.
|
[23] |
Fameau AL, Lam S, Velev OD. Multi-stimuli responsive foams combining particles and self-assembling fatty acids. Chem Sci 2013;4(10):3874–81.
|
[24] |
Jin Q, Liu G, Ji J. Micelles and reverse micelles with a photo and thermo doubleresponsive block copolymer. J Polym Sci A Polym Chem 2010;48(13):2855–61.
|
[25] |
Jiang J, Wang G, Ma Y, Cui Z, Binks BP. Smart worm-like micelles responsive to CO2/N2 and light dual stimuli. Soft Matter 2017;13(15):2727–32.
|
[26] |
Zhang Y, Guo S, Ren X, Liu X, Fang Y. CO2 and redox dual responsive Pickering emulsion. Langmuir 2017;33(45):12973–81.
|
[27] |
Jiang J, Zhu Y, Cui Z, Binks BP. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant. Angew Chem Int Ed Engl 2013;52(47):12373–6.
|
[28] |
Aveyard R, Binks BP, Clint JH. Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 2003;100–102:503–46.
|
[29] |
Chen D, Amstad E, Zhao CX, Cai L, Fan J, Chen Q, et al. Biocompatible amphiphilic hydrogel–solid dimer particles as colloidal surfactants. ACS Nano 2017;11(12):11978–85.
|
[30] |
Zhang M, Wang W, Xie R, Ju X, Liu Z, Jiang L, et al. Controllable microfluidic strategies for fabricating microparticles using emulsions as templates. Particuology 2016;24:18–31.
|
[31] |
Duan G, Haase MF, Stebe KJ, Lee D. One-step generation of salt-responsive polyelectrolyte microcapsules via surfactant-organized nanoscale interfacial complexation in emulsions (SO NICE). Langmuir 2018;34(3):847–53.
|
[32] |
Liang C, Liu Q, Xu Z. Surfactant-free switchable emulsions using CO2- responsive particles. ACS Appl Mater Interfaces 2014;6(9):6898–904.
|
[33] |
Xu M, Jiang J, Pei X, Song B, Cui Z, Binks BP. Novel oil-in-water emulsions stabilised by ionic surfactant and similarly charged nanoparticles at very low concentrations. Angew Chem Int Ed Engl 2018;57(26):7738–42.
|
[34] |
Xu M, Zhang W, Pei X, Jiang J, Cui Z, Binks BP. CO2/N2 triggered switchable Pickering emulsions stabilized by alumina nanoparticles in combination with a conventional anionic surfactant. RSC Adv 2017;7(47):29742–51.
|
[35] |
Zhu Y, Jiang J, Liu K, Cui Z, Binks BP. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant. Langmuir 2015;31(11):3301–7.
|
[36] |
Ren G, Wang M, Wang L, Wang Z, Chen Q, Xu Z, et al. Dynamic covalent silica nanoparticles for pH-switchable Pickering emulsions. Langmuir 2018;34 (20):5798–806.
|
[37] |
Zhang Q, Bai RX, Guo T, Meng T. Switchable Pickering emulsions stabilized by awakened TiO2 nanoparticle emulsifiers using UV/dark actuation. ACS Appl Mater Interfaces 2015;7(33):18240–6.
|
[38] |
Sarker M, Tomczak N, Lim S. Protein nanocage as a pH-switchable Pickering emulsifier. ACS Appl Mater Interfaces 2017;9(12):11193–201.
|
[39] |
Pudney PDA, Mutch KJ, Zhu S. Characterising the phase behaviour of stearic acid and its triethanolamine soap and acid–soap by infrared spectroscopy. Phys Chem Chem Phys 2009;11(25):5010–8.
|
[40] |
Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. 4th ed. Hoboken: John Wiley & Sons; 2012.
|
[41] |
Chen Q, Wang L, Ren G, Liu Q, Xu Z, Sun D. A fatty acid solvent of switchable miscibility. J Colloid Interface Sci 2017;504:645–51.
|
/
〈 |
|
〉 |