人非机器——面向超灵活智能制造的以人为本的人机共生

Yuqian Lu, Juvenal Sastre Adrados, Saahil Shivneel Chand, Lihui Wang

工程(英文) ›› 2021, Vol. 7 ›› Issue (6) : 734-737.

PDF(373 KB)
PDF(373 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (6) : 734-737. DOI: 10.1016/j.eng.2020.09.018
观点述评

人非机器——面向超灵活智能制造的以人为本的人机共生

作者信息 +

Humans are Not Machines—Anthropocentric Human–Machine Symbiosis for Ultra-Flexible Smart Manufacturing

Author information +
History +

引用本文

导出引用
Yuqian Lu, Juvenal Sastre Adrados, Saahil Shivneel Chand. 人非机器——面向超灵活智能制造的以人为本的人机共生. Engineering. 2021, 7(6): 734-737 https://doi.org/10.1016/j.eng.2020.09.018

参考文献

[1]
Kagermann H, Helbig J, Hellinger A, Wahlster W. Recommendations for implementing the strategic initiative Industrie 4.0: securing the future of German manufacturing industry. Final report of the Industrie 4.0 Working Group. Berlin: Federal Ministry of Education and Research; 2013 Apr.
[2]
Lu Y, Xu X, Wang L. Smart manufacturing process and system automation—a critical review of the standards and envisioned scenarios. J Manuf Syst 2020;56:312–25.
[3]
Mittal S, Khan MA, Romero D, Wuest T. Smart manufacturing: characteristics, technologies and enabling factors. Proc Inst Mech Eng Part B J Eng Manuf 2017;233(5):1342–61.
[4]
Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 2017;3(5):616–30.
[5]
Bauer M, Lecrubier Y, Suppes T. Awareness of metabolic concerns in patients with bipolar disorder: a survey of European psychiatrists. Eur Psychiatry 2008;23(3):169–77.
[6]
Wang L, Gao R, Váncza J, Krüger J, Wang XV, Makris S, et al. Symbiotic human– robot collaborative assembly. CIRP Ann 2019;68(2):701–26.
[7]
Wang L. From intelligence science to intelligent manufacturing. Engineering 2019;5(4):615–8.
[8]
Zhou J, Li P, Zhou Y, Wang B, Zang J, Meng L. Toward new-generation intelligent manufacturing. Engineering 2018;4(1):11–20.
[9]
Gao L, Shen W, Li X. New trends in intelligent manufacturing. Engineering 2019;5(4):619–20.
[10]
Rosenbrock HH. Machines with a purpose. Oxford: Oxford University Press; 1990.
[11]
Gorecky D, Schmitt M, Loskyll M, Zühlke D. Human–machine-interaction in the Industry 4.0 era. In: Proceeding of 2014 12th IEEE International Conference on Industrial Informatics (INDIN); 2014 Jul 27–30; Porto Alegre, Brazil. New York: IEEE; 2014. p. 289–94.
[12]
Peruzzini M, Grandi F, Pellicciari M. Exploring the potential of Operator 4.0 interface and monitoring. Comput Ind Eng 2020;139:105600.
[13]
Rogalla O, Ehrenmann M, Zollner R, Becher R, Dillmann R. Using gesture and speech control for commanding a robot assistant. In: Proceeding of 11th IEEE International Workshop on Robot and Human Interactive Communication; 2002 Sep 27; Berlin, Germany. New York: IEEE; 2002. p. 454–9.
[14]
Cohen PR, Oviatt SL. The role of voice input for human–machine communication. Proc Natl Acad Sci USA 1995;92(22):9921–7.
[15]
Neto P, Norberto Pires J, Paulo MA. High-level programming and control for industrial robotics: using a hand-held accelerometer-based input device for gesture and posture recognition. Ind Robot 2010;37(2):137–47.
[16]
Tellaeche A, Kildal J, Maurtua I. A flexible system for gesture based human– robot interaction. Procedia CIRP 2018;72:57–62.
[17]
Pavlovic VI, Sharma R, Huang TS. Visual interpretation of hand gestures for human–computer interaction: a review. IEEE Trans Pattern Anal Mach Intell 1997;19(7):677–95.
[18]
Liu H, Wang L. Human motion prediction for human–robot collaboration. J Manuf Syst 2017;44(Part 2):287–94.
[19]
Mohammed A, Wang L. Brainwaves driven human–robot collaborative assembly. CIRP Ann 2018;67(1):13–6.
[20]
Stephygraph LR, Arunkumar N. Brain-actuated wireless mobile robot control through an adaptive human–machine interface. In: Proceeding of the International Conference on Soft Computing Systems; 2015 Apr 23–May 13; Chennai, India. Berlin: Springer; 2016. p. 537–49.
[21]
Majewski M, Kacalak W. Human–machine speech-based interfaces with augmented reality and interactive systems for controlling mobile cranes. In: Proceeding of International Conference on Interactive Collaborative Robotics; 2016 Aug 24–25; Budapest, Hungary. Berlin: Springer; 2016. p. 89–98.
[22]
Lee T, Hollerer T. Handy AR: markerless inspection of augmented reality objects using fingertip tracking. In: Proceeding of 2007 11th IEEE International Symposium on Wearable Computers; 2007 Oct 11–13; Boston, MA, USA. New York: IEEE; 2007. p. 83–90.
[23]
Grajewski D, Górski F, Zawadzki P, Hamrol A. Application of virtual reality techniques in design of ergonomic manufacturing workplaces. Procedia Comput Sci 2013;25:289–301.
[24]
Hall ET, Hall MR. Understanding cultural differences. New York: Intercultural Press Inc.; 1989.
[25]
Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol 2009;106(3):857–64.
[26]
Yung M, Kolus A, Wells R, Neumann WP. Examining the fatigue-quality relationship in manufacturing. Appl Ergon 2020;82:102919.
[27]
Busch B, Maeda G, Mollard Y, Demangeat M, Lopes M. Postural optimization for an ergonomic human–robot interaction. In: Proceeding of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017 Sep 24–28; Vancouver, BC, Canada. New York: IEEE; 2017. p. 2778–85.
[28]
Kim W, Lorenzini M, Balatti P, Wu Y, Ajoudani A. Towards ergonomic control of collaborative effort in multi-human mobile-robot teams. In: Proceeding of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019 Nov 3–8; Macau, China. New York: IEEE; 2019. p. 3005–11.
[29]
Marin AG, Shourijeh MS, Galibarov PE, Damsgaard M, Fritzsch L, Stulp F. Optimizing contextual ergonomics models in human–robot interaction. In: Proceeding of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 1–5; Madrid, Spain. New York: IEEE; 2018. p. 8603–8.
[30]
Ding Y, Cao Y, Duffy VG, Wang Y, Zhang X. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning. Ergonomics 2020;63(7):896–908.
[31]
Schuller B, Rigoll G, Lang M. Hidden Markov model-based speech emotion recognition. In: Proceeding of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing 2003 (ICASSP ’03); 2003 Apr 6–10; Hong Kong, China. New York: IEEE; 2003. p. 401–4.
[32]
El Ayadi M, Kamel MS, Karray F. Survey on speech emotion recognition: features, classification schemes, and databases. Pattern Recognit 2011;44 (3):572–87.
[33]
Busso C, Deng Z, Yildirim S, Bulut M, Lee CM, Kazemzadeh A, et al. Analysis of emotion recognition using facial expressions, speech and multimodal information. In: Proceeding of the 6th International Conference on Multimodal Interfaces; 2014 Oct 13–15; State College, PA, USA. New York: Association for Computing Machinery; 2004. p. 205–11.
[34]
Ioannou SV, Raouzaiou AT, Tzouvaras VA, Mailis TP, Karpouzis KC, Kollias SD. Emotion recognition through facial expression analysis based on a neurofuzzy network. Neural Netw 2005;18(4):423–35.
[35]
Cohen I, Garg A, Huang TS. Emotion recognition from facial expressions using multilevel HMM. In: Proceedings of the Neural Information Processing Systems: Natural and Synthetic 14; 2000 Nov 28–30; Denver, CO, USA; 2020.
[36]
Schindler K, Van Gool L, de Gelder B. Recognizing emotions expressed by body pose: a biologically inspired neural model. Neural Netw 2008;21(9):1238–46.
[37]
McColl D, Zhang Z, Nejat G. Human body pose interpretation and classification for social human–robot interaction. Int J Soc Robot 2011;3(3):313–32.
[38]
Sadrfaridpour B, Saeidi H, Burke J, Madathil K, Wang Y. Modeling and control of trust in human–robot collaborative manufacturing. In: Ranjeev M, Donald S, Alan W, Lawless WF, editors. Robust intelligence and trust in autonomous systems. New York: Springer; 2016. p. 115–42.
[39]
Hogervorst MA, Brouwer AM, van Erp JBF. Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload. Front Neurosci 2014;8:322.
[40]
Lee J, Moray N. Trust, control strategies and allocation of function in human– machine systems. Ergonomics 1992;35(10):1243–70.
[41]
Wilson HJ, Daugherty PR. Collaborative intelligence: humans and AI are joining forces. HBR 2018;96(4):114–23.
[42]
Rauch E, Linder C, Dallasega P. Anthropocentric perspective of production before and within Industry 4.0. Comput Ind Eng 2019;139:105644.
[43]
Hägele M, Schaaf W, Helms E. Robot assistants at manual workplaces: effective co-operation and safety aspects. In: Proceeding of the 33rd ISR (International Symposium on Robotics); 2002 Oct 7–11; Stockholm, Sweden. Berlin: Springer; 2002.
[44]
Ferraguti F, Villa R, Landi CT, Zanchettin AM, Rocco P, Secchi C. A unified architecture for physical and ergonomic human–robot collaboration. Robotica 2019;38(4):1–15.
[45]
Stankovic JA. Research directions for the internet of things. IEEE Internet Things J 2014;1(1):3–9.
PDF(373 KB)

Accesses

Citation

Detail

段落导航
相关文章

/