面向高速机载通信系统的水平全向天线分集系统

Yongjian Zhang, Yue Li, Weiquan Zhang, Zhijun Zhang, Zhenghe Feng

工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 72-79.

PDF(2290 KB)
PDF(2290 KB)
工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 72-79. DOI: 10.1016/j.eng.2020.10.014
研究论文
Article

面向高速机载通信系统的水平全向天线分集系统

作者信息 +

Omnidirectional Antenna Diversity System for High-Speed Onboard Communication

Author information +
History +

摘要

本文提出了一种由电磁学与空气动力学协同设计的水平全向双极化天线,可用于高速机载分集系统。天线主体结构包含探针馈电的金属腔和微带线馈电的横槽,可分别实现水平极化与垂直极化。此外,设计的双层超表面结构可作为人工磁导体边界,不仅尺寸紧凑,而且使天线具备可直接安装金属机身的能力。为提升天线流体力学性能,在天线表面贴附一楔形块结构,用于降低风阻。针对本文所提出的天线进行设计验证,实测结果与仿真结果一致。垂直极化的工作带宽在2.37~2.55 GHz的范围内,水平面方向图的增益不圆度为3.67 dB;水平极化的工作带宽在2.45~2.47 GHz的范围内,增益不圆度为3.71 dB。包含楔形块结构在内,天线整体尺寸为0.247λ0 × 0.345λ0 × 0.074λ0(其中λ0为中心频率下自由空间波长),两端口间的隔离度可达33 dB以上。本文所提出的天线分集系统兼具电磁学与空气动力学的性能优势,在高速机载通信应用中表现出优良潜力。

Abstract

In this article, an omnidirectional dual-polarized antenna with synergetic electromagnetic and aerodynamic properties is propounded for high-speed diversity systems. The propounded antenna comprises a probe-fed cavity for horizontally polarized radiation and a microstrip-fed slot for vertical polarization. Double-layer metasurfaces are properly designed as artificial magnetic conductor boundaries with direct metal-mountable onboard installation and compact sizes. An attached wedge-shaped block is utilized for windage reduction in hydrodynamics. The propounded antenna is fabricated for design verification, and the experimental results agree well with the simulated ones. For vertical polarization, the operating bandwidth is in the range of 2.37–2.55 GHz, and the realized gain variation in the azimuthal radiation pattern is 3.67 decibels (dB). While an impedance bandwidth in the range of 2.45–2.47 GHz and a gain variation of 3.71 dB are also achieved for horizontal polarization. A port isolation more than 33 dB is obtained in a compact volume of 0.247λ0 × 0.345λ0 × 0.074λ0, where λ0 represents the wavelength in vacuum at the center frequency, wherein the wedge-shaped block is included. The propounded diversity antenna has electromagnetic and aerodynamic merits, and exhibits an excellent potential for high-speed onboard communication.

关键词

天线分集系统 / 空气动力学 / 电磁学 / 水平全向辐射 / 高速机载通信

Keywords

Antenna diversity system / Aerodynamics / Electromagnetics / Omnidirectional radiation / High-speed onboard communication

引用本文

导出引用
Yongjian Zhang, Yue Li, Weiquan Zhang. 面向高速机载通信系统的水平全向天线分集系统. Engineering. 2022, 11(4): 72-79 https://doi.org/10.1016/j.eng.2020.10.014

参考文献

[1]
Qin F, Gao SS, Luo Q, Mao CX, Gu C, Wei G, et al. A simple low-cost sharedaperture dual-band dual-polarized high-gain antenna for synthetic aperture radars. IEEE Trans Antennas Propag 2016;64(7):2914–22.
[2]
Ferrando-Rocher M, Herranz-Herruzo JI, Valero-Nogueira A, BernardoClemente B, Zaman AU, Yang J. 88 Ka-band dual-polarized array antenna based on gap waveguide technology. IEEE Trans Antennas Propag 2019;67 (7):4579–88.
[3]
Bolt RJ, Cavallo D, Gerini G, Deurloo D, Grooters R, Neto A, et al. Characterization of a dual-polarized connected-dipole array for Ku-band mobile terminals. IEEE Trans Antennas Propag 2016;64(2):591–8.
[4]
Yu W, Luo GQ, Yu Y, Pan Y, Cao W, Pan Y, et al. Dual-polarized band-absorptive frequency selective rasorber using meander-line and lumped resistors. IEEE Trans Antennas Propag 2019;67(2):1318–22.
[5]
He Y, Li Y, Sun W, Zhang Z. Dual-polarized, high-gain, and low-profile magnetic current array antenna. IEEE Trans Antennas Propag 2019;67(2):1312–7.
[6]
Yang J, Pantaleev M, Billade B, Ivashina M, Carozzi T, Helldner L, et al. A compact dual-polarized 4-port eleven feed with high sensitivity for reflectors over 0.35–1.05 GHz. IEEE Trans Antennas Propag 2015;63(12):5955–60.
[7]
Ha J, Al-Tarifi MA, Filipovic DS. Design of wideband combined annular slotmonopole antenna. IEEE Trans Antennas Propag 2016;64(9):4138–43.
[8]
Hong W, Sarabandi K. Low-profile, multi-element, miniaturized monopole antenna. IEEE Trans Antennas Propag 2009;57(1):72–80.
[9]
Nguyen-Trong N, Ta SX, Ikram M, Bertling K, Abbosh AM. A low-profile wideband tripolarized antenna. IEEE Trans Antennas Propag 2019;67 (3):1946–51.
[10]
Byun G, Choo H, Ling H. Optimum placement of DF antenna elements for accurate DOA estimation in a harsh platform environment. IEEE Trans Antennas Propag 2013;61(9):4783–91.
[11]
Abbosh AM, Bialkowski ME. Design of ultrawideband planar monopole antennas of circular and elliptical shape. IEEE Trans Antennas Propag 2008;56(1):17–23.
[12]
Ha J, Elmansouri MA, Filipovic DS. A compact ultrawideband reflector antenna: using a wide-band omnidirectional antenna with a mechanically steerable endfire beam to illuminate a half-cut paraboloid reflector. IEEE Antennas Propag Mag 2018;60(3):75–86.
[13]
Wang J, Shen Z, Zhao L. Wideband dual-polarized antenna for spectrum monitoring systems. Antennas Wirel Propag Lett 2017;16:2236–9.
[14]
Quan X, Li R. A broadband dual-polarized omnidirectional antenna for base stations. IEEE Trans Antennas Propag 2013;61(2):943–7.
[15]
Dai XW, Wang ZY, Liang CH, Chen X, Wang LT. Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application. Antennas Wirel Propag Lett 2013;12:1492–5.
[16]
Yang N, Leung KW, Li WW. Linearly polarized omnidirectional polarizationdiversity dielectric resonator antenna. In: Proceedings of 2019 IEEE Conference on Antenna Measurements and Applications (CAMA); 2019 Oct 23–25; Bali, Indonesia; 2019.
[17]
Li W, Leung KW, Yang N. Omnidirectional dielectric resonator antenna with a planar feed for circular polarization diversity design. IEEE Trans Antennas Propag 2018;66(3):1189–97.
[18]
Martín P, Elena VB, Loredo-Souza AM, Camaño EB. Experimental study of the effects of dish antennas on the wind loading of telecommunication towers. J Wind Eng Ind Aerodyn 2016;149:40–7.
[19]
Anderson R, Dorrenbacher C, Krausz R, Margerum D. A multiple telemetering antenna system for supersonic aircraft. IRE Trans Antennas Propag 1955;3 (4):173–6.
[20]
Bhattacharjee S, Maity S, Chaudhuri SRB, Mitra M. A compact dual-band dualpolarized omnidirectional antenna for on-body applications. IEEE Trans Antennas Propag 2019;67(8):5044–53.
[21]
Li Y, Zhang Z, Feng Z, Iskander MF. Design of omnidirectional dual-polarized antenna in slender and low-profile column. IEEE Trans Antennas Propag 2014;62(4):2323–6.
[22]
Liu P, Meng Z, Wang L, Zhang Y, Li Y. Omnidirectional dual-polarized saber antenna with low wind drag. IEEE Trans Antennas Propag 2020;68 (1):558–63.
[23]
Syue CJ, Kehn MNM, Quevedo-Teruel O. Compact mikaelian lens design using metasurface structure. In: Proceedings of 2016 International Symposium on Antennas and Propagation (ISAP); 2016 Oct 24–28; Okinawa, Japan; 2016.
[24]
Shang Y, Shen Z. Polarization-independent backscattering enhancement of cylinders based on conformal gradient metasurfaces. IEEE Trans Antennas Propag 2017;65(5):2386–96.
[25]
Raad HR, Abbosh AI, Al-Rizzo HM, Rucker DG. Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans Antennas Propag 2013;61 (2):524–31.
[26]
Morrison FA. An introduction to fluid mechanics. Cambridge: Cambridge University Press; 2013.
[27]
Presse A, Tarot AC. Circuit model of a double-layer artificial magnetic conductor. Antennas Wirel Propag Lett 2016;15:1061–4.
[28]
Kuse R, Hori T, Fujimoto M, Seki T, Sato K, Oshima I. Equivalent circuit analysis for double layer patch type AMC in consideration of mutual coupling between layers. In: Proceedings of 2013 Asia-Pacific Microwave Conference Proceedings (APMC); 2013 Nov 5–8; Seoul, Republic of Korea; 2013.
[29]
Liu P, Li Y, Zhang Z, Feng Z. Omnidirectional dual-polarized antenna with sabre-like structure. IEEE Trans Antennas Propag 2017;65(6):3221–5.
PDF(2290 KB)

Accesses

Citation

Detail

段落导航
相关文章

/