一种通过计算机辅助抗体设计技术获得的靶向人表皮生长因子受体2的新型全人抗体HF

Chunxia Qiao, Ming Lv, Xinying Li, Xiaoling Lang, Shouqin Lv, Mian Long, Yan Li, Shusheng Geng, Zhou Lin, Beifen Shen, Jiannan Feng

工程(英文) ›› 2021, Vol. 7 ›› Issue (11) : 1566-1576.

PDF(4202 KB)
PDF(4202 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (11) : 1566-1576. DOI: 10.1016/j.eng.2020.10.024
研究论文
Article

一种通过计算机辅助抗体设计技术获得的靶向人表皮生长因子受体2的新型全人抗体HF

作者信息 +

A Novel Human Antibody, HF, against HER2/erb-B2 Obtained by a Computer-Aided Antibody Design Method

Author information +
History +

摘要

全人抗体免疫原性小、安全性高。目前研究的处于临床试验阶段的大多数抗体药物都是人源化或全人抗体。全人抗体多通过噬菌体展示技术(体外)或转基因小鼠(体内)产生;其他方法包括B淋巴细胞永生化、人-人杂交瘤、单细胞聚合酶链反应等。本文描述了一种基于分子结构的计算机辅助设计新抗体技术,用于获得全人抗体。由于靶向人表皮生长因子受体2(HER2)的注射用曲妥珠单抗(赫赛汀)的结构复杂,我们首先针对赫赛汀识别HER2 的潜在表位设计了6 条短肽。随后,将这些肽作为抗体互补决定区,并采用适合的免疫球蛋白框架,获得名为“HF”的新型抗HER2 抗体。HF比赫赛汀具有更高的亲和力和更有效的抗肿瘤活性。我们的工作为用于机理研究以及免疫相关疾病(如癌症和传染病)的成像和临床应用的新型全人抗体的快速设计和筛选提供了有用工具。

Abstract

Fully human antibodies have minimal immunogenicity and safety profiles. At present, most potential antibody drugs in clinical trials are humanized or fully human. Human antibodies are mostly generated using the phage display method (in vitro) or by transgenic mice (in vivo); other methods include B lymphocyte immortalization, human–human hybridoma, and single-cell polymerase chain reaction. Here, we describe a structure-based computer-aided de novo design technology for human antibody generation. Based on the complex structure of human epidermal growth factor receptor 2 (HER2)/Herceptin, we first designed six short peptides targeting the potential epitope of HER2 recognized by Herceptin. Next, these peptides were set as complementarity determining regions in a suitable immunoglobulin frame, giving birth to a novel anti-HER2 antibody named “HF,” which possessed higher affinity and more effective anti-tumor activity than Herceptin. Our work offers a useful tool for the quick design and selection of novel human antibodies for basic mechanical research as well as for imaging and clinical applications in immune-related diseases, such as cancer and infectious diseases.

关键词

人表皮生长因子受体2(HER2/erb-B2) / 全人抗体 / 计算机辅助设计(CAD)

Keywords

HER2/erb-B2 / Human antibody / Computer-aided design

引用本文

导出引用
Chunxia Qiao, Ming Lv, Xinying Li. 一种通过计算机辅助抗体设计技术获得的靶向人表皮生长因子受体2的新型全人抗体HF. Engineering. 2021, 7(11): 1566-1576 https://doi.org/10.1016/j.eng.2020.10.024

参考文献

[1]
Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004;3(5):391–400.
[2]
Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007;6(5):349–56.
[3]
Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007;25(10):1171–6.
[4]
Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJM, et al. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 2006;15(5):949–60.
[5]
Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 2006;103 (11):4005–10.
[6]
Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol 2006;6 (5):343–57.
[7]
Caravella JA, Wang D, Glaser SM, Lugovskoy A. Structure-guided design of antibodies. Curr Comput Aided Drug Des 2010;6(2):128–38.
[8]
Chang H, Qin W, Li Y, Zhang J, Lin Z, Lv M, et al. A novel human scFv fragment against TNF-a from de novo design method. Mol Immunol 2007;44 (15):3789–96.
[9]
Geng S, Chang H, Qin W, Lv M, Li Y, Feng J, et al. A novel anti-TNF scFv constructed with human antibody frameworks and antagonistic peptides. Immunol Res 2015;62(3):377–85.
[10]
Qin W, Feng J, Li Y, Lin Z, Shen B. De novo design TNF-a antagonistic peptide based on the complex structure of TNF-a with its neutralizing monoclonal antibody Z12. J Biotechnol 2006;125(1):57–63.
[11]
Qin W, Feng J, Li Y, Lin Z, Shen B. A novel domain antibody rationally designed against TNF-a using variable region of human heavy chain antibody as scaffolds to display antagonistic peptides. Mol Immunol 2007;44(9):2355–61.
[12]
Tagliabue E, Balsari A, Campiglio M, Pupa SM. HER2 as a target for breast cancer therapy. Expert Opin Biol Ther 2010;10(5):711–24.
[13]
Garnock-Jones KP, Keating GM, Scott LJ. Trastuzumab: a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2) positive early breast cancer. Drugs 2010;70(2):215–39.
[14]
Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 2009;14(4):320–68.
[15]
Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003;421(6924):756–60.
[16]
Tomasevic N, Luehrsen K, Baer M, Palath V, Martinez D, Williams J, et al. A high affinity recombinant antibody to the human EphA3 receptor with enhanced ADCC activity. Growth Factors 2014;32(6):223–35.
[17]
Gu X, Jia X, Feng J, Shen B, Huang Y, Geng S, et al. Molecular modeling and affinity determination of scFv antibody: proper linker peptide enhances its activity. Ann Biomed Eng 2010;38(2):537–49.
[18]
Jorgensen WL. The many roles of computation in drug discovery. Science 2004;303(5665):1813–8.
[19]
Crameri A, Cwirla S, Stemmer WPC. Construction and evolution of antibodyphage libraries by DMA shuffling. Nat Med 1996;2(1):100–2.
[20]
Hanes J, Jermutus L, Weber-Bornhauser S, Bosshard HR, Pluckthun A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc Natl Acad Sci USA 1998;95(24):14130–5.
[21]
Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL. Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 2002;10(4):895–905.
[22]
Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. Design of a novel globular protein fold with atomic-level accuracy. Science 2003;302 (5649):1364–8.
[23]
Dwyer MA, Looger LL, Hellinga HW. Computational design of a biologically active enzyme. Science 2004;304(5679):1967–71.
[24]
Kortemme T, Joachimiak LA, Bullock AN, Schuler AD, Stoddard BL, Baker D. Computational redesign of protein–protein interaction specificity. Nat Struct Mol Biol 2004;11(4):371–9.
[25]
He W, Qiang M, Ma W, Valente AJ, Quinones MP, Wang W, et al. Development of a synthetic promoter for macrophage gene therapy. Hum Gene Ther 2006;17(9):949–59.
[26]
Pantazes RJ, Grisewood MJ, Maranas CD. Recent advances in computational protein design. Curr Opin Struct Biol 2011;21(4):467–72.
PDF(4202 KB)

Accesses

Citation

Detail

段落导航
相关文章

/