基于5G车用无线通信技术网络的工业园区多层协同框架

Yanjun Shi, Qiaomei Han, Weiming Shen *, Xianbin Wang

工程(英文) ›› 2021, Vol. 7 ›› Issue (6) : 818-831.

PDF(3354 KB)
PDF(3354 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (6) : 818-831. DOI: 10.1016/j.eng.2020.12.021
研究论文
Article

基于5G车用无线通信技术网络的工业园区多层协同框架

作者信息 +

A Multi-Layer Collaboration Framework for Industrial Parks with 5G Vehicle-to-Everything Networks

Author information +
History +

摘要

第五代(5G)无线通信网络有望在垂直产业转型中发挥重要的作用。在众多激动人心的5G应用中,通过车用无线通信技术(V2X)通信可更高效地执行工业园区内的物流任务。本文提出了一种基于V2X的工业园区物流管理多层协同框架。该框架包括三层:感知与执行层、物流层以及配置层。除以上三层之间的协同外,本研究还讨论了设备、边缘服务器以及云服务之间的协同。针对工业园区内的高效物流,可通过四项功能来实现任务协同,这四项功能分别是:环境感知与地图构建、任务分配、路径规划,以及车辆运动。为动态协调这些功能,将采用5G切片和V2X通信技术支持的设备边云协同。随后,利用目标级联分析法对工业园区协同方案进行配置和评估。最后,通过一工业园区物流分析案例,验证了所提出协同框架的可行性。

Abstract

The fifth-generation (5G) wireless communication networks are expected to play an essential role in the transformation of vertical industries. Among many exciting applications to be enabled by 5G, logistics tasks in industry parks can be performed more efficiently via vehicle-to-everything (V2X) communications. In this paper, a multi-layer collaboration framework enabled by V2X is proposed for logistics management in industrial parks. The proposed framework includes three layers: a perception and execution layer, a logistics layer, and a configuration layer. In addition to the collaboration among these three layers, this study addresses the collaboration among devices, edge servers, and cloud services. For effective logistics in industrial parks, task collaboration is achieved through four functions: environmental perception and map construction, task allocation, path planning, and vehicle movement. To dynamically coordinate these functions, device–edge–cloud collaboration, which is supported by 5G slices and V2X communication technology, is applied. Then, the analytical target cascading method is adopted to configure and evaluate the collaboration schemes of industrial parks. Finally, a logistics analytical case study in industrial parks is employed to demonstrate the feasibility of the proposed collaboration framework.

关键词

5G / 车用无线通信技术 / 工业园区 / 物流 / 设备边云协同 / 目标级联分析

Keywords

5G / Vehicle-to-everything / Industrial park / Logistics / Device–edge–cloud collaboration / Analytical target cascading

引用本文

导出引用
Yanjun Shi, Qiaomei Han, Weiming Shen *. 基于5G车用无线通信技术网络的工业园区多层协同框架. Engineering. 2021, 7(6): 818-831 https://doi.org/10.1016/j.eng.2020.12.021

参考文献

[1]
Qiu X, Luo H, Xu G, Zhong R, Huang GQ. Physical assets and service sharing for IoT-enabled Supply Hub in Industrial Park (SHIP). Int J Prod Econ 2015;159:4–15.
[2]
Qiu X, Huang GQ, Lam JSL. A bilevel analytical model for dynamic storage pricing in a Supply Hub in Industrial Park (SHIP). IEEE Trans Autom Sci Eng 2015;12(3):1017–32.
[3]
Feng J, Li F, Xu C, Zhong RY. Data-driven analysis for RFID-enabled smart factory: a case study. IEEE Trans Syst Man Cybern Syst 2020;50(1):81–8.
[4]
Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, et al. A survey on the edge computing for the Internet of Things. IEEE Access 2018;6:6900–19.
[5]
Satyanarayanan M. The emergence of edge computing. Computer 2017;50 (1):30–9.
[6]
Mao Y, You C, Zhang J, Huang K, Letaief KB. A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tut 2017;19 (4):2322–58.
[7]
Ha K, Chen Z, Hu W, Richter W, Pillai P, Satyanarayanan M. Towards wearable cognitive assistance. In: Proceedings of the 12th Annual International Conference on Mobile Systems, Applications, and Services; 2014 Jun 16–19; Bretton Woods, NH, USA; 2014. p. 68–81.
[8]
Zhao Z, Lin P, Shen L, Zhang M, Huang GQ. IoT edge computing-enabled collaborative tracking system for manufacturing resources in industrial park. Adv Eng Inform 2020;43:101044.
[9]
Qi B, Xia Y, Li B, Shi K, Xue M. Family energy management system based on edge computing: architecture, key technology and implementation. Electr Power Constr 2018;39(3):33–41.
[10]
Lin W, Sharma P, Chatterjee S, Sharma D, Lee D, Iyer S, et al. Scaling persistent connections for cloud services. Comput Netw 2015;93:518–30.
[11]
Chen Y. Integrated and intelligent manufacturing: perspectives and enablers. Engineering 2017;3(5):588–95.
[12]
Lv L, Shi Y, Shen W. Mobility-as-a-service research trends of 5G-based vehicle platooning. Serv Oriented Comput Appl 2021;15(1):1–3.
[13]
Shi Y, Lin N, Han Q, Zhang T, Shen W. A method for transportation planning and profit sharing in collaborative multi-carrier vehicle routing. Mathematics 2020;8(10):1788.
[14]
Pocovi G, Shariatmadari H, Berardinelli G, Pedersen K, Steiner J, Li Z. Achieving ultra-reliable low-latency communications: challenges and envisioned system enhancements. IEEE Network 2018;32(2):8–15.
[15]
Guevara L, Cheein FA. The role of 5G technologies: challenges in smart cities and intelligent transportation systems. Sustainability 2020;12(16):6469.
[16]
Sawanobori TK. The next generation of wireless: 5G leadership in the US Washington [presentation]. In: CTIA EverythingWireless; 2016 Feb 9; Washington, DC, USA; 2016.
[17]
Campolo C, Molinaro A, Iera A, Menichella F. 5G network slicing for vehicle-toeverything services. IEEE Wirel Commun 2017;24(6):38–45.
[18]
Shi Y, Han Q, Shen W, Zhang H. Potential applications of 5G communication technologies in collaborative intelligent manufacturing. IET Collab Intell Manuf 2019;1(4):109–16.
[19]
Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 2017;3(5):616–30.
[20]
Kumar PM, Gandhi UD, Manogaran G, Sundarasekar R, Chilamkurti N, Varatharajan R. Ant colony optimization algorithm with Internet of Vehicles for intelligent traffic control system. Comput Netw 2018;144:154–62.
[21]
Tolba A. Content accessibility preference approach for improving service optimality in internet of vehicles. Comput Netw 2019;152:78–86.
[22]
Akpakwu GA, Silva BJ, Hancke GP, Abu-Mahfouz AM. A survey on 5G networks for the Internet of Things: communication technologies and challenges. IEEE Access 2018;6:3619–47.
[23]
Butt TA, Iqbal R, Shah SC, Umar T. Social Internet of Vehicles: architecture and enabling technologies. Comput Electr Eng 2018;69:68–84.
[24]
Li W, Xiao M, Yi Y, Gao L. Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty. Adv Eng Inform 2019;40:81–92.
[25]
Rawat DB, Alsabet R, Bajracharya C, Song M. On the performance of cognitive Internet-of-Vehicles with unlicensed user-mobility and licensed user-activity. Comput Netw 2018;137:98–106.
[26]
3rd Generation Partnership Project; technical specification group services and system aspects; release 16 description. Report. Valbonne: 3GPP Support Office; 2020.
[27]
Abdel Hakeem SA, Hady AA, Kim HW. 5G–V2X: standardization, architecture, use cases, network-slicing, and edge-computing. Wirel Netw 2020;26 (8):6015–41.
[28]
Casas P, Schatz R. Quality of experience in cloud services: survey and measurements. Comput Netw 2014;68:149–65.
[29]
Selimi M, Khan AM, Dimogerontakis E, Freitag F, Centelles RP. Cloud services in the Guifi.net community network. Comput Netw 2015;93:373–88.
[30]
Schreiber M, Knöppel C, Franke U. LaneLoc: lane marking based localization using highly accurate maps. In: Proceedings of 2013 IEEE Intelligent Vehicles Symposium (IV); 2013 Jun 23–26; Gold Coast, QLD, Australia; 2013. p. 449–54.
[31]
Liu Z, Yu S, Zheng N. A co-point mapping-based approach to drivable area detection for self-driving cars. Engineering 2018;4(4):479–90.
[32]
Xu X, Hao J, Yu L, Deng Y. Fuzzy optimal allocation model for task–resource assignment problem in a collaborative logistics network. IEEE Trans Fuzzy Syst 2019;27(5):1112–25.
[33]
Shriyam S, Gupta SK. Incorporation of contingency tasks in task allocation for multirobot teams. IEEE Trans Autom Sci Eng 2020;17(2):809–22.
[34]
Ma H, Koenig S. AI Buzzwords explained: multi-agent path finding (MAPF). AI Matters 2017;3(3):15–9.
[35]
Hönig W, Kumar TKS, Cohen L, Ma H, Xu H, Ayanian N, et al. Multi-agent path finding with kinematic constraints. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence; 2017 Aug 19–25; Melbourne, VIC, Australia; 2017. p. 4869–73.
[36]
Shen W, Wang L, Hao Q. Agent-based distributed manufacturing process planning and scheduling: a state-of-the-art survey. IEEE Trans Syst Man Cybern C 2006;36(4):563–77.
[37]
Goldenberg M, Felner A, Stern R, Sharon G, Sturtevant N, Holte RC, et al. Enhanced partial expansion A*. J Artif Intell Res 2014;50:141–87.
[38]
Wagner G, Choset H. Subdimensional expansion for multirobot path planning. Artif Intell 2015;219:1–24.
[39]
Sharon G, Stern R, Goldenberg M, Felner A. The increasing cost tree search for optimal multi-agent pathfinding. Artif Intell 2013;195:470–95.
[40]
Sharon G, Stern R, Felner A, Sturtevant NR. Conflict-based search for optimal multi-agent pathfinding. Artif Intell 2015;219:40–66.
[41]
Jiang K, Yang D, Liu C, Zhang T, Xiao Z. A flexible multi-layer map model designed for lane-level route planning in autonomous vehicles. Engineering 2019;5(2):305–18.
[42]
Talgorn B, Kokkolaras M. Compact implementation of non-hierarchical analytical target cascading for coordinating distributed multidisciplinary design optimization problems. Struct Multidiscipl Optim 2017;56 (6):1597–602.
[43]
Guarneri P, Leverenz JT, Wiecek MM, Fadel G. Optimization of nonhierarchically decomposed problems. J Comput Appl Math 2013;246:312–9.
[44]
Ghosh S, Mavris DN. A methodology for probabilistic analysis of distributed multidisciplinary architecture (PADMA). In: Proceeding of 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; 2016 Jun 13–17; Wahington, DC, USA; 2016. p. 3210.
PDF(3354 KB)

Accesses

Citation

Detail

段落导航
相关文章

/