
一种通用的基于斯托克斯流的复杂流束轮廓工程方法
Zhenyu Yang, Lang Nan, Ho Cheung Shum
工程(英文) ›› 2021, Vol. 7 ›› Issue (5) : 655-662.
一种通用的基于斯托克斯流的复杂流束轮廓工程方法
A Versatile Flow-Profile Engineering Method in the Stokes Flow Regime for Complex-Shaped Flows
为了在微流控管道中实现诸如混合强化、反应控制和材料合成等应用,经常需要编辑其中的流束轮廓。传统的流束轮廓编辑方法通过激发惯性二次流,使管道中流体重新分布,然而在惯性流可以忽略的微流控环境中,难以借助这类方法形成流束轮廓。传统方法使用的对称式管道内结构也限制了可以创造的流束轮廓的多样性。此外,这类方法生成的每个流束轮廓均对应一个严格定义的特定流动环境,因而在有变化的流动环境中,难以再现这些轮廓。为了解决上述问题,我们提出一种基于非惯性二次流的工程方法来编辑流束轮廓:在微管道内部署一系列级联的具有不同几何形状的阶梯来操控处于斯托克斯流范围内的流体;通过调整这些微阶梯的形状可以定制输出任意的流束轮廓;设计数值式流束轮廓预测程序,可快速预测以任意次序排列的预定义的微阶梯所输出的流束轮廓。该方法可用于生成包括非对称流束轮廓在内的各种稳定的流束轮廓,并且广泛适用于多种微流控流动环境,促进对复杂微流场的预测和设计。
Flow profiles are frequently engineered in microfluidic channels for enhanced mixing, reaction control, and material synthesis. Conventionally, flow profiles are engineered by inducing inertial secondary flow to redistribute the streams, which can hardly be reproduced in microfluidic environments with negligible inertial flow. The employed symmetric channel structures also limit the variety of achievable flow profiles. Moreover, each of the flow profiles specifically corresponds to a strictly defined flow condition and cannot be generalized to other flow environments. To address these issues, we present a systematic method to engineer the flow profile using inertialess secondary flow. The flow is manipulated in the Stokes regime by deploying a cascaded series of microsteps with various morphologies inside a microchannel to shape the flow profile. By tuning the shapes of the microsteps, arbitrary outflow profiles can be customized. A numerical profile-transformation program is developed for rapid prediction of the output profiles of arbitrary sequences of predefined microsteps. The proposed method allows the engineering of stable flow profiles, including asymmetric ones, over a wide range of flow conditions for complex microfluidic environmental prediction and design.
微流控 / 流束轮廓 / 斯托克斯流 / 流体动力学聚焦 / 流动塑形
Microfluidics / Flow profile / Stokes flow / Hydrodynamic focusing / Flow shaping
[1] |
Cai QW, Ju XJ, Zhang SY, Chen ZH, Hu JQ, Zhang LP, et al. Controllable fabrication of functional microhelices with droplet microfluidics. ACS Appl Mater Interfaces 2019;11(49):46241–50.
|
[2] |
Geng Y, Ling SD, Huang J, Xu J. Multiphase microfluidics: fundamentals, fabrication, and functions. Small 2020;16(6):1906357.
|
[3] |
Stroock AD, Dertinger SK, Ajdari A, Mezic´ I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science 2002;295(5555):647–51.
|
[4] |
Burns MA, Johnson BN, Brahmasandra SN, Handique K, Webster JR, Krishnan M, et al. An integrated nanoliter DNA analysis device. Science 1998;282 (5388):484–7.
|
[5] |
Simonnet C, Groisman A. Two-dimensional hydrodynamic focusing in a simple microfluidic device. Appl Phys Lett 2005;87(11):114104.
|
[6] |
Losey MW, Schmidt MA, Jensen KF. Microfabricated multiphase packed-bed reactors: characterization of mass transfer and reactions. Ind Eng Chem Res 2001;40(12):2555–62.
|
[7] |
Wang FJ, Huang JP, Xu JH. Continuous-flow synthesis of the azo pigment yellow 14 using a three-stream micromixing process. Org Process Res Dev 2019;23(12):2637–46.
|
[8] |
Chen D, Zhao CX, Lagoin C, Hai M, Arriaga LR, Koehler S, et al. Dispersing hydrophobic natural colourant b-carotene in shellac particles for enhanced stability and tunable colour. R Soc Open Sci 2017;4(12):170919.
|
[9] |
You JB, Kang K, Tran TT, Park H, Hwang WR, Kim JM, et al. PDMS-based turbulent microfluidic mixer. Lab Chip 2015;15(7):1727–35.
|
[10] |
Lim CY, Lam YC, Yang C. Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics 2010;4 (1):014101.
|
[11] |
Lu LH, Ryu KS, Liu C. A magnetic microstirrer and array for microfluidic mixing. J Microelectromech Syst 2002;11(5):462–9.
|
[12] |
Williams MS, Longmuir KJ, Yager P. A practical guide to the staggered herringbone mixer. Lab Chip 2008;8(7):1121–9.
|
[13] |
Lin Y, Yu X, Wang Z, Tu ST, Wang Z. Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation. Chem Eng J 2011;171(1):291–300.
|
[14] |
Amini H, Sollier E, Weaver WM, Di Carlo D. Intrinsic particle-induced lateral transport in microchannels. Proc Natl Acad Sci USA 2012;109(29):11593–8.
|
[15] |
Lee MG, Choi S, Park JK. Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 2009;9 (21):3155–60.
|
[16] |
Eluru G, Julius LAN, Gorthi SS. Single-layer microfluidic device to realize hydrodynamic 3D flow focusing. Lab Chip 2016;16(21):4133–41.
|
[17] |
Golden JP, Justin GA, Nasir M, Ligler FS. Hydrodynamic focusing—a versatile tool. Anal Bioanal Chem 2012;402(1):325–35.
|
[18] |
Hou K, Li Y, Liu Y, Zhang R, Hsiao BS, Zhu M. Continuous fabrication of cellulose nanocrystal/poly(ethylene glycol) diacrylate hydrogel fiber from nanocomposite dispersion: rheology, preparation and characterization. Polymer 2017;123:55–64.
|
[19] |
Paulsen KS, Di Carlo D, Chung AJ. Optofluidic fabrication for 3D-shaped particles. Nat Commun 2015;6:6976.
|
[20] |
Zhao X, Bian F, Sun L, Cai L, Li L, Zhao Y. Microfluidic generation of nanomaterials for biomedical applications. Small 2020;16(9):1901943.
|
[21] |
Song S, Choi S. Inertial modulation of hydrophoretic cell sorting and focusing. Appl Phys Lett 2014;104(7):074106.
|
[22] |
Gao R, Cheng L, Wang S, Bi X, Wang X, Wang R, et al. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Talanta 2020;207:120261.
|
[23] |
Nunes JK, Wu CY, Amini H, Owsley K, Di Carlo D, Stone HA. Fabricating shaped microfibers with inertial microfluidics. Adv Mater 2014;26(22):3712–7.
|
[24] |
Amini H, Sollier E, Masaeli M, Xie Yu, Ganapathysubramanian B, Stone HA, et al. Engineering fluid flow using sequenced microstructures. Nat Commun 2013;4:1826.
|
[25] |
Stoecklein D, Davies M, de Rutte JM, Wu CY, Di Carlo D, Ganapathysubramanian B. FlowSculpt: software for efficient design of inertial flow sculpting devices. Lab Chip 2019;19(19):3277–91.
|
[26] |
Wu CY, Owsley K, Di Carlo D. Rapid software-based design and optical transient liquid molding of microparticles. Adv Mater 2015;27(48):7970–8.
|
[27] |
Wu CY, Stoecklein D, Kommajosula A, Lin J, Owsley K, Ganapathysubramanian B, et al. Shaped 3D microcarriers for adherent cell culture and analysis. Microsyst Nanoeng 2018;4(1):21.
|
[28] |
Stoecklein D, Di Carlo D. Nonlinear microfluidics. Anal Chem 2019;91 (1):296–314.
|
[29] |
Boyd DA, Shields AR, Howell PB Jr, Ligler FS. Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design. Lab Chip 2013;13(15):3105–10.
|
[30] |
Stoecklein D, Davies M, Wubshet N, Le J, Ganapathysubramanian B. Automated design for microfluid flow sculpting: multiresolution approaches, efficient encoding, and CUDA implementation. J Fluids Eng 2017;139(3):031402.
|
[31] |
Daniele MA, Boyd DA, Adams AA, Ligler FS. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications. Adv Healthc Mater 2015;4(1):11–28.
|
[32] |
Qi H, Liang A, Jiang H, Chong X, Wang Y. Effect of pipe surface wettability on flow slip property. Ind Eng Chem Res 2018;57(37):12543–50.
|
/
〈 |
|
〉 |