
用于灵敏快速测量超阻隔渗透的预测仪器
Jianfeng Wanyan, Kun Cao, Zhiping Chen, Yun Li, Chenxi Liu, Runqing Wu, Xiao-Dong Zhang, Rong Chen
工程(英文) ›› 2021, Vol. 7 ›› Issue (10) : 1461-1470.
用于灵敏快速测量超阻隔渗透的预测仪器
A Predictive Instrument for Sensitive and Expedited Measurement of Ultra-Barrier Permeation
测量柔性有机显示器件对水蒸气的高阻隔性,是确保其可靠性所面临的重大工程挑战。一方面,目前缺少10-6 g·m-2·d-1量级的水渗透率测试手段;另一方面,目前也没有标准的超阻隔样品用于渗透率测量的校准。为了对渗透过超阻隔材料的痕量水蒸气流量进行高灵敏、短周期测量,本文将渗透模型集成至基于渗透分子动态积累、检测和抽空的高灵敏质谱测量中,从而开发出了一种具有预测功能的测量仪器。通过使用标准聚合物样品进行校准,确保了测量结果的可靠性。校准后的水蒸气渗透检测下限在10-7g·m-2·d-1量级,满足超阻隔渗透的测量灵敏度要求。本文利用渗透实验数据对所开发的预测渗透模型进行了测试评估,使得利用非稳态数据预测稳态渗透率成为可能,实现在更短的时间内有效开展超阻隔测量。
The reliable operation of flexible display devices poses a significant engineering challenge regarding the metrology of high barriers against water vapor. No reliable results have been reported in the range of 10-6 g∙(m2∙d)-1, and there is no standard ultra-barrier for calibration. To detect trace amount of water vapor permeation through an ultra-barrier with extremely high sensitivity and a greatly reduced test period, a predictive instrument was developed by integrating permeation models into high-sensitivity mass spectrometry measurement based on dynamic accumulation, detection, and evacuation of the permeant. Detection reliability was ensured by means of calibration using a standard polymer sample. After calibration, the lower detection limit for water vapor permeation is in the range of 10-7 g∙(m2∙d)-1, which satisfies the ultra-barrier requirement. Predictive permeation models were developed and evaluated using experimental data so that the steady-state permeation rate can be forecasted from non-steady-state results, thus enabling effective measurement of ultra-barrier permeation within a significantly shorter test period.
Water vapor permeation / Ultra-barrier / Predictive model / Quadrupole mass spectrometer
[1] |
Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science 1995;267(5202):1332–4.
|
[2] |
Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009;459(7244):234–8.
|
[3] |
Lee L, Yoon KH, Jung JW, Yoon HR, Kim H, Kim SH, et al. Ultra gas-proof polymer hybrid thin layer. Nano Lett 2018;18(9):5461–6.
|
[4] |
Li Y, Xiong Y, Yang H, Cao K, Chen R. Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition. J Mater Res 2020;35 (7):681–700.
|
[5] |
Nam T, Park YJ, Lee H, Oh IK, Ahn JH, Cho SM, et al. A composite layer of atomiclayer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 2017;116:553–61.
|
[6] |
Kwon JH, Jeong EG, Jeon Y, Kim DG, Lee S, Choi KC. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers. ACS Appl Mater Interfaces 2019;11 (3):3251–61.
|
[7] |
Jing Y, Cao K, Zhou B, Geng S, Wen Y, Shan B, et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals. Chem Mater 2020;32(24):10653–62.
|
[8] |
Burrows P, Graff G, Gross M, Martin P, Hall M, Mast E, et al. Gas permeation and lifetime tests on polymer-based barrier coatings. In: Proceedings of SPIE—The International Society for Optical Engineering; 2000 Jul 30–Aug 4; San Diego, CA, USA. Bellingham: SPIE; 2001.
|
[9] |
Lewis JS, Weaver MS. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Sel Top Quant 2004;10(1):45–57.
|
[10] |
Kempe MD, Reese MO, Dameron AA. Evaluation of the sensitivity limits of water vapor transmission rate measurements using electrical calcium test. Rev Sci Instrum 2013;84(2):025109.
|
[11] |
Nakano Y, Yanase T, Nagahama T, Yoshida H, Shimada T. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10–6 g m2 day1 range. Sci Rep 2016;6(1):35408.
|
[12] |
Kiese S, Kücükpinar E, Reinelt M, Miesbauer O, Ewender J, Langowski HC. A systematic approach for the accurate and rapid measurement of water vapor transmission through ultra-high barrier films. Rev Sci Instrum 2017;88 (2):025108.
|
[13] |
AQUATRAN model 3: highest sensitivity for the most demanding applications [Internet]. Hertfordshire: RDM Test Equipment; c2021 [cited 2021 Apr 7]. Available from: http://www.rdmtest.com/p/Aquatran-Model-3/.
|
[14] |
Nörenberg H, Hoshi S, Kondo T. 12.4L: Late-news paper: measurement of water vapor permeation in the range of 10–3–105 g/m2 /day for applications in flexible electronics. SID Int Symp Dig Tech Pap 2012;39(1):147–50.
|
[15] |
Brinkmann T, Lillepärg J, Notzke H, Pohlmann J, Shishatskiy S, Wind J, et al. Development of CO2 selective poly(ethylene oxide)-based membranes: from laboratory to pilot plant scale. Engineering 2017;3(4):485–93.
|
[16] |
Zhou C, Zhu G, Xu Y, Yu J, Zhang X, Sheng H. Novel methods by using nonvacuum insulated tubing to extend the lifetime of the tubing. Front Energy 2015;9(2):142–7.
|
[17] |
Duncan B, Urquhart J, Roberts S. Review of measurement and modelling of permeation and diffusion in polymers. NPL Report. Middlesex: National Physical Laboratory; 2005 Jan. Report No.: DEPC-MPR 012.
|
[18] |
ASTM E96/E96M–16: Standard test methods for water vapor transmission of materials. ASTM Standards. West Conshohocken: ASTM International; 2016.
|
[19] |
Kim HB, Choi YJ, Hui K, Jang C, Cho YR. Novel method to evaluate moisture permeation of the metal barrier coating on polymer substrate. J Nanosci Nanotechnol 2012;12(4):3511–4.
|
[20] |
Carcia PF, McLean RS, Reilly MH, Groner MD, George SM. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 2006;89(3):031915.
|
[21] |
Zhang XD, Lewis JS, Wolter SD, Parker CB, Glass JT. High sensitivity permeation measurement system for ‘‘ultrabarrier” thin films. J Vac Sci Technol A 2007;25 (6):1587–93.
|
[22] |
Zhang XD, Lewis JS, Parker CB, Glass JT, Wolter SD. Measurement of reactive and condensable gas permeation using a mass spectrometer. J Vac Sci Technol A 2008;26(5):1128–37.
|
[23] |
Hülsmann P, Philipp D, Köhl M. Measuring temperature-dependent water vapor and gas permeation through high barrier films. Rev Sci Instrum 2009;80 (11):113901.
|
[24] |
Yoshida H, Ebina T, Arai K, Kobata T, Ishii R, Aizawa T, et al. Development of water vapor transmission rate measuring device using a quadrupole mass spectrometer and standard gas barrier films down to the 10–6 g m2 day1 level. Rev Sci Instrum 2017;88(4):043301.
|
[25] |
Schubert S, Klumbies H, Müller-Meskamp L, Leo K. Electrical calcium test for moisture barrier evaluation for organic devices. Rev Sci Instrum 2011;82 (9):094101.
|
[26] |
Crank J. The mathematics of diffusion. 2nd ed. Oxford: Oxford University Press; 1975.
|
[27] |
Graff GL, Williford RE, Burrows PE. Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation. J Appl Phys 2004;96(4):1840–9.
|
[28] |
Bjorck A. Least squares methods. In: Ciarlet PG, Lions GL, editors. Handbook of numerical analysis. Amsterdam: Elsevier Science Publishers B.V.; 1990. p. 465–652.
|
[29] |
Martínez-Landeros VH, Gnade BE, Quevedo-López MA, Ramírez-Bon R. Permeation studies on transparent multiple hybrid SiO2-PMMA coatingsAl2O3 barriers on PEN substrates. J Sol-Gel Sci Technol 2011;59(2):345–51.
|
[30] |
ASTM F1249–20: Standard test method for water vapor transmission rate through plastic film and sheeting using a modulated infrared sensor. ASTM Standards. West Conshohocken: ASTM International; 2013.
|
[31] |
Polymer Data Handbook, 2nd ed [book review]. J Am Chem Soc 2009;131 (44):16330.
|
[32] |
Balluffi RW, Allen SM, Carter WC. Diffusion in noncrystalline materials. In: Balluffi RW, Allen SM, Carter WC. Kinetics of materials. Hoboken: John Wiley & Sons, Inc.; 2005. p. 229–49.
|
[33] |
Roy S, Xu W, Park S, Liechti K. Anomalous moisture diffusion in viscoelastic polymers: modeling and testing. Int J Appl Mech 2000;67(2):391–6.
|
[34] |
Loh WK, Crocombe AD, Abdel Wahab MM, Ashcroft IA. Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive. Int J Adhes Adhes 2005;25(1):1–12.
|
[35] |
Wang X, Li Y, Lin J, Shan B, Chen R. Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition. Rev Sci Instrum 2017;88(11):115108.
|
[36] |
Li Y, Cao K, Xiong Y, Yang H, Zhang Y, Lin Y, et al. Composite encapsulation films with ultrahigh barrier performance for improving the reliability of blue organic light-emitting diodes. Adv Mater Inter 2020;7(13):2000237.
|
[37] |
Visser RJ, Moro L, Chu X, Chen JR, van de Weijer P, Akkerman HB, et al. Thin film encapsulation. In: Adachi C, Hattori R, Kaji H, Tsujimura T, editors. Handbook of organic light-emitting diodes. New York: Springer; 2018. p. 1–51.
|
[38] |
Rasool S, Khan N, Jahankhan M, Kim DH, Ho TT, Do LT, et al. Amine-based interfacial engineering in solution-processed organic and perovskite solar cells. ACS Appl Mater Interfaces 2019;11(18):16785–94.
|
/
〈 |
|
〉 |