
纤维膜在机械压力下由不透明到透明的转变
Chao Wang, Jing Zhao, Liu Liu, Peng Zhang, Xianfeng Wang, Jianyong Yu, Bin Ding
工程(英文) ›› 2022, Vol. 19 ›› Issue (12) : 84-92.
纤维膜在机械压力下由不透明到透明的转变
Transformation of Fibrous Membranes from Opaque to Transparent Under Mechanical Pressing
智能可穿戴设备、电子皮肤、空气过滤和组织工程等领域,对透明薄膜材料或基材的需求很大。传统透明材料,如玻璃、塑料等,由于缺乏相互连通的孔道、不理想的孔隙率和柔性,不能满足这些新兴领域的要求。静电纺丝纤维膜因其具有小孔径、高孔隙率和良好的柔性等优点可以弥补传统材料的不足,因此,开发透明的静电纺丝纤维膜具有重大的价值。本文报道了一种简单有效的方法,在不使用任何其他添加剂的情况下,通过机械压力,直接将静电纺丝纤维膜制备成柔性的、有孔的透明纤维膜材料。同时,首次总结了压制后聚合物的透明度性能与分子结构之间的关系。经过机械压力处理后,纤维膜仍可以保持纤维形态、微米级孔道和一定的孔隙率。以聚苯乙烯静电纺丝纤维膜为例,所制备的透明聚苯乙烯纤维膜具有优异的光学性能和机械性能。透明纤维膜可实现高透光率(≈89%,可见光波长在550 nm处)、大孔隙率(10%~30%)和强的机械拉伸强度(≈148 MPa),该拉伸强度约为初始静电纺丝纤维膜的78倍。此外,本文基于透明纤维膜,利用真空辅助抽滤银纳米线和机械压力作用,制备出透明的导电纤维膜材料。与氧化铟锡导电薄膜相比,我们所制备的透明导电纤维膜展示出良好的导电性(9 Ω·sq-1,78%的透光率)和优异的机械性能(可承受大量的弯曲应力)。
There is a great demand for transparent films, membranes, or substrates in the fields of intelligent wearables, electronic skins, air filtration, and tissue engineering. Traditional materials such as glass and plastics cannot satisfy these requirements because of the lack of interconnected pores, undesirable porosity, and flexibility. Electrospun fibrous membranes offset these shortcomings because they contain small pores and have high porosity as well as outstanding flexibility. Thus, the development of transparent electrospun fibrous membranes is of great value. This work reports a simple and effective way to develop flexible and porous transparent fibrous membranes (TFMs) directly from electrospun fibrous membranes via mechanical pressing, without employing any other additives. In addition, the relationship between the transparency performance and the molecular structure of the polymers after pressing was summarized for the first time. After mechanical pressing, the membranes maintained fibrous morphology, micron-sized pores, and desired porosity. Polystyrene fibrous membranes, which exhibited excellent optical and mechanical properties, were used as a reference. The TFMs possessed high transparency (∼89% visible light transmittance at 550 nm), high porosity (10%–30%), and strong mechanical tensile strength (∼148 MPa), nearly 78 times that of the pristine electrospun fibrous membranes. Moreover, this study demonstrated that transparent and conductive membranes can be fabricated based on TFMs using vacuum-assisted filtration of silver nanowires followed by mechanical pressing. Compared with indium tin oxide films, conductive TFMs exhibited good electrical conductivities (9 Ω per square (Ω·sq−1), 78% transmittance at 550 nm) and notable mechanical performance (to bear abundant bending stresses).
透明 / 静电纺丝纤维膜 / 孔道结构 / 机械压力 / 导电
Transparent / Electrospun fibrous membranes / Porous structure / Mechanical pressing / Conductivity
[1] |
Meng L, Bian R, Guo C, Xu B, Liu H, Jiang L. Aligning Ag nanowires by a facile bioinspired directional liquid transfer: toward anisotropic flexible conductive electrodes. Adv Mater 2018;30(25):1706938.
|
[2] |
Singh VK, Ravi SK, Sun W, Tan SC. Transparent nanofibrous mesh selfassembled from molecular LEGOs for high efficiency air filtration with new functionalities. Small 2017;13(6):1601924.
|
[3] |
Wang Y, Cheng J, Xing Y, Shahid M, Nishijima H, Pan W. Stretchable platinum network-based transparent electrodes for highly sensitive wearable electronics. Small 2017;13(27):1604291.
|
[4] |
Kang S, Cho S, Shanker R, Lee H, Park J, Um DS, et al. Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skinattachable loudspeakers and microphones. Sci Adv 2018;4(8):eaas8772.
|
[5] |
Hecht DS, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 2011;23 (13):1482–513.
|
[6] |
An BW, Heo S, Ji S, Bien F, Park JU. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat Commun 2018;9(1):2458.
|
[7] |
Gong M, Wan P, Ma D, Zhong M, Liao M, Ye J, et al. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv Funct Mater 2019;29(26):1902127.
|
[8] |
Kim MW, An S, Seok H, Yoon SS, Yarin AL. Electrostatic transparent air filter membranes composed of metallized microfibers for particulate removal. ACS Appl Mater Interfaces 2019;11(29):26323–32.
|
[9] |
Chen R, Zhang X, Wang P, Xie K, Jian J, Zhang Y, et al. Transparent thermoplastic polyurethane air filters for efficient electrostatic capture of particulate matter pollutants. Nanotechnology 2019;30(1):015703.
|
[10] |
De Sio L, Ding B, Focsan M, Kogermann K, Pascoal-Faria P, Petronela F, et al. Personalized reusable face masks with smart nano-assisted destruction of pathogens for COVID-19: a visionary road. Chemistry 2021;27(20):6112–30.
|
[11] |
Yao Y, Tao J, Zou J, Zhang B, Li T, Dai J, et al. Light management in plastic–paper hybrid substrate towards high-performance optoelectronics. Energy Environ Sci 2016;9(7):2278–85.
|
[12] |
Wang Y, Yuan L, Tian H, Zhang L, Lu A. Strong, transparent cellulose film as gas barrier constructed via water evaporation induced dense packing. J Membr Sci 2019;585:99–108.
|
[13] |
Ye D, Lei X, Li T, Cheng Q, Chang C, Hu L, et al. Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 2019;13(4):4843–53.
|
[14] |
Niu X, Liu Y, Fang G, Huang C, Rojas OJ, Pan H. Highly transparent, strong, and flexible films with modified cellulose nanofiber bearing UV shielding property. Biomacromolecules 2018;19(12):4565–75.
|
[15] |
Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, et al. Highly transparent and flexible nanopaper transistors. ACS Nano 2013;7(3):2106–13.
|
[16] |
Jin J, Lee D, Im HG, Han YC, Jeong EG, Rolandi M, et al. Chitin nanofiber transparent paper for flexible green electronics. Adv Mater 2016;28 (26):5169–75.
|
[17] |
Huang J, Zhong Yi, Zhang L, Cai J. Extremely strong and transparent chitin films: a high-efficiency, energy-saving, and ‘‘Green” route using an aqueous KOH/Urea solution. Adv Funct Mater 2017;27(26):1701100.
|
[18] |
Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, et al. Highly anisotropic, highly transparent wood composites. Adv Mater 2016;28(26):5181–7.
|
[19] |
Zhu M, Wang Y, Zhu S, Xu L, Jia C, Dai J, et al. Anisotropic, transparent films with aligned cellulose nanofibers. Adv Mater 2017;29(21):1606284.
|
[20] |
Jia C, Chen C, Mi R, Li T, Dai J, Yang Z, et al. Clear wood toward highperformance building materials. ACS Nano 2019;13(9):9993–10001.
|
[21] |
Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, et al. Processing bulk natural wood into a high-performance structural material. Nature 2018;554(7691):224–8.
|
[22] |
Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, et al. Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv Energy Mater 2016;6(22):1601122.
|
[23] |
Zhou T, Wang JW, Huang M, An R, Tan H, Wei H, et al. Breathable nanowood biofilms as guiding layer for green on-skin electronics. Small 2019;15 (31):1901079.
|
[24] |
Wang X, Huang Z, Miao D, Zhao J, Yu J, Ding B. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano 2019;13(2):1060–70.
|
[25] |
Zhao J, Zhu W, Wang X, Liu L, Yu J, Ding B. Environmentally benign modification of breathable nanofibrous membranes exhibiting superior waterproof and photocatalytic self-cleaning properties. Nanoscale Horiz. 2019;4(4):867–73.
|
[26] |
Ge J, Zong D, Jin Q, Yu J, Ding B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater 2018;28(10):1705051.
|
[27] |
Lim BH, Nirmala R, Navamathavan R, Kim HY. Flexible and conducting carbon nanofibers obtained from electrospun polyacrylonitrile/phosphoric acid nanofibers. J Nanosci Nanotechnol 2016;16(1):1033–7.
|
[28] |
Chen LF, Lu Y, Yu L, Lou XW. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 2017;10(8):1777–83.
|
[29] |
Si Y, Ren T, Li Y, Ding B, Yu J. Fabrication of magnetic polybenzoxazine-based carbon nanofibers with Fe3O4 inclusions with a hierarchical porous structure for water treatment. Carbon 2012;50(14):5176–85.
|
[30] |
Shan H, Wang X, Shi F, Yan J, Yu J, Ding B. Hierarchical porous structured SiO2/ SnO2 nanofibrous membrane with superb flexibility for molecular filtration. ACS Appl Mater Interfaces 2017;9(22):18966–76.
|
[31] |
Shan H, Dong X, Cheng X, Si Y, Yu J, Ding B. Highly flexible, mesoporous structured, and metallic Cu-doped C/SiO2 nanofibrous membranes for efficient catalytic oxidative elimination of antibiotic pollutants. Nanoscale 2019;11 (31):14844–56.
|
[32] |
Si Y, Wang X, Dou L, Yu J, Ding B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv 2018;4(4):eaas8925.
|
[33] |
Wang X, Ding B, Yu J, Wang M. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials. Nano Today 2011;6(5):510–30.
|
[34] |
Wang X, Ding B, Sun G, Wang M, Yu J. Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Prog Mater Sci 2013;58(8):1173–243.
|
[35] |
Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater 2004;16(14):1151–70.
|
[36] |
Bergshoef MM, Vancso GJ. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv Mater 1999;11 (16):1362–5.
|
[37] |
Kim IC, Kim TH, Lee SH, Kim BS. Extremely foldable and highly transparent nanofiber-based electrodes for liquid crystal smart devices. Sci Rep 2018;8 (1):11517.
|
[38] |
Zhao Y, Wang X, Zhang Q, Li Ni. Preparation of transparent polyacrylonitrile reinforced polyurethane film and application as temperature monitor. Polym Eng Sci 2018;58(11):1905–10.
|
[39] |
Liu L, Li HY, Fan YJ, Chen YH, Kuang SY, Li ZB, et al. Nanofiber-reinforced silver nanowires network as a robust, ultrathin, and conformable epidermal electrode for ambulatory monitoring of physiological signals. Small 2019;15 (22):1900755.
|
[40] |
Zhang C, Cai J, Liang C, Khan A, Li WD. Scalable fabrication of metallic nanofiber network via templated electrodeposition for flexible electronics. Adv Funct Mater 2019;29(35):1903123.
|
[41] |
Zhang S, Liu H, Tang N, Ge J, Yu J, Ding B. Direct electronetting of highperformance membranes based on self-assembled 2D nanoarchitectured networks. Nat Commun 2019;10(1):1458.
|
[42] |
Liu H, Zhang S, Liu L, Yu J, Ding BZSC, Liu LF, et al. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration. Adv Funct Mater 2019;29(39):1904108.
|
[43] |
Zhang S, Liu H, Tang N, Ali N, Yu J, Ding B. Highly efficient, transparent, and multifunctional air filters using self-assembled 2D nanoarchitectured fibrous networks. ACS Nano 2019;13(11):13501–12.
|
[44] |
Khalid B, Bai X, Wei H, Huang Ya, Wu H, Cui Yi. Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett 2017;17(2):1140–8.
|
[45] |
Zuo F, Zhang S, Liu H, Fong H, Yin X, Yu J, et al. Free-standing polyurethane nanofiber/nets air filters for effective PM capture. Small 2017;13(46):1702139.
|
[46] |
Monzon JJ, Sanchez-Soto LL. Algebraic structure of Fresnel reflection and transmission coefficients at an interface. Optik 1999;110(7):309–12.
|
[47] |
Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005;309 (5738):1215–90.
|
[48] |
Havel M, Behler K, Korneva G, Gogotsi Y. Transparent thin films of multiwalled carbon nanotubes self-assembled on polyamide 11 nanofibers. Adv Funct Mater 2008;18(16):2322–7.
|
[49] |
Fuh YK, Kuo CC, Huang ZM, Li SC, Liu ER. A transparent and flexible graphenepiezoelectric fiber generator. Small 2016;12(14):1875–81.
|
[50] |
Lin S, Bai X, Wang H, Wang H, Song J, Huang K, et al. Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows. Adv Mater 2017;29(41):1703238.
|
[51] |
Wu H, Kong D, Ruan Z, Hsu PC, Wang S, Yu Z, et al. A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 2013;8 (6):421–5.
|
/
〈 |
|
〉 |