基于自动原位校准的大型飞机构件装配过程三维微位移监测系统

Zhenyuan Jia, Bing Liang, Wei Liu, Kun Liu, Jianwei Ma

工程(英文) ›› 2022, Vol. 19 ›› Issue (12) : 105-116.

PDF(3904 KB)
PDF(3904 KB)
工程(英文) ›› 2022, Vol. 19 ›› Issue (12) : 105-116. DOI: 10.1016/j.eng.2021.02.023
研究论文
Article

基于自动原位校准的大型飞机构件装配过程三维微位移监测系统

作者信息 +

3D Microdisplacement Monitoring of Large Aircraft Assembly with Automated In Situ Calibration

Author information +
History +

摘要

三维(3D)微位移监测在大型飞机装配中起着至关重要的作用。本文提出了一种广泛适用的基于接近传感器的高精度在线3D微位移监测方法和系统,以及相应的原位校准方法,可应用于飞机装配过程中遇到的各种极端工作条件,如紧凑和遮挡的空间。首先建立了一个3D监测模型,仅基于接近传感器测量的一
维距离实现3D微位移监测,该模型涉及传感器外部参数,如测量原点(PBP)和单位位移矢量(UDV)。然后,结合空间变换原理和加权优化校准方法,获得高精度外部参数。最后,针对尾翼装配过程开展了校准和监测实验。PBP 的校准精度在XY 方向优于±10 μm,在Z 方向优于±2 μm,UDV 的校准精度优于0.07°。此外,3D微位移监测系统的精度可达到±15 μm。总体而言,本文为基于接近传感器的3D微位移监测的建模和校准提供了新的见解,并为飞机装配过程中紧凑空间内的几何测量提供了一种高精度、高效率、低成本的技术手段。

Abstract

Three-dimensional (3D) microdisplacement monitoring plays a crucial role in the assembly of large aircraft. This paper presents a broadly applicable high-precision online 3D microdisplacement monitoring method and system based on proximity sensors as well as a corresponding in situ calibration method, which can be applied under various extreme working conditions encountered in the aircraft assembly process, such as compact and obstructed spaces. A 3D monitoring model is first established to achieve 3D microdisplacement monitoring based only on the one-dimensional distances measured by proximity sensors, which concerns the extrinsic sensor parameters, such as the probe base point (PBP) and the unit displacement vector (UDV). Then, a calibration method is employed to obtain these extrinsic parameters with high precision by combining spatial transformation principles and weighted optimization. Finally, calibration and monitoring experiments performed for a tailplane assembly process are reported. The calibration precision for the PBP is better than ±10 μm in the X and Y directions and ±2 μm in the Z direction, and the calibration precision for the UDV is better than 0.07°. Moreover, the accuracy of the 3D microdisplacement monitoring system can reach ±15 μm. In general, this paper provides new insights into the modeling and calibration of 3D microdisplacement monitoring based on proximity sensors and a precise, efficient, and low-cost technical means for performing related measurements in compact spaces during the aircraft assembly process.

关键词

飞机制造 / 装配 / 校准 / 状态监测 / 位移测量

Keywords

Aircraft manufacture / Assembly / Calibration / Condition monitoring / Displacement measurement

引用本文

导出引用
Zhenyuan Jia, Bing Liang, Wei Liu. 基于自动原位校准的大型飞机构件装配过程三维微位移监测系统. Engineering. 2022, 19(12): 105-116 https://doi.org/10.1016/j.eng.2021.02.023

参考文献

[1]
Müller R, Esser M, Vette M. Reconfigurable handling systems as an enabler for large components in mass customized production. J Intell Manuf 2013;24 (5):977–90.
[2]
McKenna V, Jin Y, Murphy A, Morgan M, Fu R, Qin X, et al. Cost-oriented process optimisation through variation propagation management for aircraft wing spar assembly. Robot Comput Integr Manuf 2019;57:435–51.
[3]
Yu L, Zhang Y, Bi Q, Wang Y. Research on surface normal measurement and adjustment in aircraft assembly. Precis Eng 2017;50:482–93.
[4]
Deng Z, Huang X, Li S, Xing H. On-line calibration and uncertainties evaluation of spherical joint positions on large aircraft component for zero-clearance posture alignment. Robot Comput Integr Manuf 2019;56:38–54.
[5]
Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 2017;3(5):616–30.
[6]
Bao Y, Chen Z, Wei S, Xu Y, Tang Z, Li H. The state of the art of data science and engineering in structural health monitoring. Engineering 2019;5(2):234–42.
[7]
Chen Z, Du F. Measuring principle and uncertainty analysis of a large volume measurement network based on the combination of iGPS and portable scanner. Measurement 2017;104:263–77.
[8]
Hoang VD, Jo KH. A simplified solution to motion estimation using an omnidirectional camera and a 2D LRF sensor. IEEE Trans Ind Inform 2016;12 (3):1064–73.
[9]
An Yi, Li Bo, Hu H, Zhou X. Building an omnidirectional 3D color laser ranging system through a novel calibration method. IEEE Trans Ind Electron 2019;66 (11):8821–31.
[10]
Lei P, Zheng L. An automated in situ alignment approach for finish machining assembly interfaces of large-scale components. Robot Comput Integr Manuf 2017;46:130–43.
[11]
Pérez Muñoz P, Albajez García JA, Santolaria Mazo J. Analysis of the initial thermal stabilization and air turbulences effects on laser tracker measurements. J Manuf Syst 2016;41:277–86.
[12]
Schmitt RH, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, et al. Advances in large-scale metrology—review and future trends. CIRP Ann 2016;65 (2):643–65.
[13]
Li X, Li X, Ge SS, Khyam MO, Luo C. Automatic welding seam tracking and identification. IEEE Trans Ind Electron 2017;64(9):7261–71.
[14]
Wang Z. An imaging and measurement system for robust reconstruction of weld pool during arc welding. IEEE Trans Ind Electron 2015;62(8):5109–18.
[15]
Spencer BF, Hoskere V, Narazaki Y. Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering 2019;5(2):199–222.
[16]
Lee T, Kim C, Cho DD. A monocular vision sensor-based efficient SLAM method for indoor service robots. IEEE Trans Ind Electron 2019;66(1):318–28.
[17]
Xu Y, Gao F, Jiang X. Performance analysis and evaluation of geometric parameters in stereo deflectometry. Engineering 2018;4(6):806–15.
[18]
Cervera A, Ezra O, Kuperman A, Peretz MM. Modeling and control of magnetic actuation systems based on sensorless displacement information. IEEE Trans Ind Electron 2019;66(6):4849–59.
[19]
Caetano DM, Rabuske T, Fernandes J, Pelkner M, Fermon C, Cardoso S, et al. High-resolution nondestructive test probes based on magnetoresistive sensors. IEEE Trans Ind Electron 2019;66(9):7326–37.
[20]
Peng K, Yu Z, Liu X, Chen Z, Pu H. Features of capacitive displacement sensing that provide high-accuracy measurements with reduced manufacturing precision. IEEE Trans Ind Electron 2017;64(9):7377–86.
[21]
Uekita M, Takaya Y. On-machine dimensional measurement of large parts by compensating for volumetric errors of machine tools. Precis Eng 2016;43:200–10.
[22]
Kim YK, Kim KS, Kim S. A portable and remote 6-DOF pose sensor system with a long measurement range based on 1-D laser sensors. IEEE Trans Ind Electron 2015;62(9):5722–9.
[23]
Liu S, Xu De, Zhang D, Zhang Z. High precision automatic assembly based on microscopic vision and force information. IEEE Trans Autom Sci Eng 2016;13 (1):382–93.
[24]
Kim YK, Kim Y, Jung YS, Jang IG, Kim KS, Kim S, et al. Developing accurate longdistance 6-DOF motion detection with one-dimensional laser sensors: threebeam detection system. IEEE Trans Ind Electron 2013;60(8):3386–95.
[25]
Zapico P, Fernández P, Rico JC, Valiño G, Patiño H. Extrinsic calibration of a conoscopic holography system integrated in a CMM. Precis Eng 2018;52:484–93.
[26]
Liu W, Wang T, Liang B, Feng Di, Jiang X, Zhang Y, et al. Measurement of threedimensional information by single eddy current displacement sensor. IEEE Sens J 2019;19(9):3543–52.
[27]
Bi C, Fang J, Li K, Guo Z. Extrinsic calibration of a laser displacement sensor in a non-contact coordinate measuring machine. Chin J Aeronaut 2017;30 (4):1528–37.
[28]
Bi C, Liu Y, Fang J, Guo X, Lv L, Dong P. Calibration of laser beam direction for optical coordinate measuring system. Measurement 2015;73:191–9.
[29]
Wu L, Ren H. Finding the kinematic base frame of a robot by hand–eye calibration using 3D position data. IEEE Trans Autom Sci Eng 2017;14 (1):314–24.
[30]
Guo Y, Song B, Tang X, Zhou X, Jiang Z. A measurement method for calibrating kinematic parameters of industrial robots with point constraint by a laser displacement sensor. Meas Sci Technol 2020;31(7):075004.
[31]
Sharifzadeh S, Biro I, Kinnell P. Robust hand–eye calibration of 2D laser sensors using a single-plane calibration artefact. Robot Comput Integr Manuf 2020;61:101823.
[32]
Zou Y, Lan R. An end-to-end calibration method for welding robot laser vision systems with deep reinforcement learning. IEEE Trans Instrum Meas 2020;69 (7):4270–80.
[33]
Liang B, Liu W, Jiang X, Feng D, Liu K, Zhou M, et al. A novel automatic calibration method for displacement sensors based on the spatial transformation theory. In: Proceedings of 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; 2019 Jul 8–12; Hong Kong, China; 2019.
PDF(3904 KB)

Accesses

Citation

Detail

段落导航
相关文章

/