随机订单下制造企业的生产触发策略比较

Longfei Zhou, Lin Zhang, Yajun Fang

工程(英文) ›› 2021, Vol. 7 ›› Issue (6) : 798-806.

PDF(2483 KB)
PDF(2483 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (6) : 798-806. DOI: 10.1016/j.eng.2021.03.012
研究论文
Article

随机订单下制造企业的生产触发策略比较

作者信息 +

Comparison of Production-Triggering Strategies for Manufacturing Enterprises under Random Orders

Author information +
History +

摘要

尽管新兴技术在制造系统中得到了广泛应用,但由于客户需求的多样性以及随机性,制造企业仍面临着如何保持高效灵活的生产的问题。由于加快订单交付速度与降低库存成本之间存在矛盾,所以制造企业如何制定合适的生产触发策略是其在动态环境中保持较高竞争力的关键所在。本文主要研究了制造企业在满足随机订单交付的同时降低库存成本的生产触发策略。提出的生产触发策略包括:时间触发策略、事件触发策略和混合触发策略。本文研究了不同生产触发策略的统一理论模型和仿真模型。在每种策略中都同时考虑并实施了零件生产触发策略和产品组装触发策略。在时间触发策略和混合触发策略中还同时考虑了触发周期对系统性能的影响。实验结果表明,如果触发周期设置合适,混合触发策略和时间触发策略能够获得比事件触发策略更快的订单交付时间和更低的库存成本。

Abstract

Although new technologies have been deeply applied in manufacturing systems, manufacturing enterprises are still encountering difficulties in maintaining efficient and flexible production due to the random arrivals of diverse customer requirements. Fast order delivery and low inventory cost are fundamentally contradictory to each other. How to make a suitable production-triggering strategy is a critical issue for an enterprise to maintain a high level of competitiveness in a dynamic environment. In this paper, we focus on production-triggering strategies for manufacturing enterprises to satisfy randomly arriving orders and reduce inventory costs. Unified theoretical models and simulation models of different production strategies are proposed, including time-triggered strategies, event-triggered strategies, and hybrid-triggered strategies. In each model, both part-production-triggering strategies and product-assembly-triggering strategies are considered and implemented. The time-triggered models and hybrid-triggered models also consider the impact of the period on system performance. The results show that hybrid-triggered and time-triggered strategies yield faster order delivery and lower inventory costs than event-triggered strategies if the period is set appropriately.

关键词

协同制造 / 生产触发 / 优化 / 仿真 / 企业

Keywords

Collaborative manufacturing / Production triggering / Optimization / Simulation / Enterprise

引用本文

导出引用
Longfei Zhou, Lin Zhang, Yajun Fang. 随机订单下制造企业的生产触发策略比较. Engineering. 2021, 7(6): 798-806 https://doi.org/10.1016/j.eng.2021.03.012

参考文献

[1]
Zhang L, Luo Y, Tao F, Li BH, Ren L, Zhang X, et al. Cloud manufacturing: a new manufacturing paradigm. Enterprise Inf Syst 2014;8(2):167–87.
[2]
Zhong RY, Xu X, Klotz E, Newman ST. Intelligent manufacturing in the context of industry 4.0: a review. Engineering 2017;3(5):616–30.
[3]
Zhou J, Li P, Zhou Y, Wang B, Zang J, Meng L. Toward new-generation intelligent manufacturing. Engineering 2018;4(1):11–20.
[4]
Zhou L, Zhang L, Zhao C, Laili Y, Xu L. Diverse task scheduling for individualized requirements in cloud manufacturing. Enterprise Inf Syst 2018;12(3):300–18.
[5]
Wu J. Thoughts on the development of novel network technology. Sci China Inf Sci 2018;61(10):101301.
[6]
Bouzary H, Chen FF. Service optimal selection and composition in cloud manufacturing: a comprehensive survey. Int J Adv Manuf Technol 2018;97(1– 4):795–808.
[7]
Wang L, Guo S, Li X, Du B, Xu W. Distributed manufacturing resource selection strategy in cloud manufacturing. Int J Adv Manuf Technol 2018;94(9– 12):3375–88.
[8]
Zhou L, Zhang L, Ren L, Laili Y. Matching and selection of distributed 3D printing services in cloud manufacturing. In: Proceeding of IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society. 2017 Oct 29–Nov 1; Beijing, China. New York: IEEE; 2017. p. 4728–33.
[9]
Li Y, Chang Q, Ni J, Brundage MP. Event-based supervisory control for energy efficient manufacturing systems. IEEE Trans Autom Sci Eng 2016;15 (1):92–103.
[10]
Zhou L, Zhang L, Ren L. Modelling and simulation of logistics service selection in cloud manufacturing. Procedia CIRP 2018;72:916–21.
[11]
Yu C, Zhang W, Xu X, Ji Y, Yu S. Data mining based multi-level aggregate service planning for cloud manufacturing. J Intell Manuf 2018;29(6): 1351–61.
[12]
Li H, Chan KC, Liang M, Luo X. Composition of resource-service chain for cloud manufacturing. IEEE Trans Industr Inform 2016;12(1):211–9.
[13]
Li T, He T, Wang Z, Zhang Y. An approach to IoT service optimal composition for mass customization on cloud manufacturing. IEEE Access 2018;6:50572–86.
[14]
Zhou J, Yao X, Lin Y, Chan FT, Li Y. An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing. Inf Sci 2018;456:50–82.
[15]
Zhou L, Zhang L, Laili Y, Zhao C, Xiao Y. Multi-task scheduling of distributed 3D printing services in cloud manufacturing. Int J Adv Manuf Technol 2018;96(9– 12):3003–17.
[16]
Liu Y, Xu X, Zhang L, Wang L, Zhong RY. Workload-based multi-task scheduling in cloud manufacturing. Robot Comput integr Manuf 2017;45:3–20.
[17]
Akbaripour H, Houshmand M, van Woensel T, Mutlu N. Cloud manufacturing service selection optimization and scheduling with transportation considerations: mixed-integer programming models. Int J Adv Manuf Technol 2018;95(1–4):43–70.
[18]
Zhou L, Zhang L, Sarker BR, Laili Y, Ren L. An event-triggered dynamic scheduling method for randomly arriving tasks in cloud manufacturing. Int J Comput Integrated Manuf 2018;31(3):318–33.
[19]
Hu X, Wu P. A data assimilation framework for discrete event simulations. ACM Trans Model Comput Simul 2019;29(3):17.
[20]
Zhang L, Zhou L, Ren L, Laili Y. Modeling and simulation in intelligent manufacturing. Comput Ind 2019;112:103123.
[21]
Zhao Y, Yan CB, Zhao Q, Huang N, Li J, Guan X. Efficient simulation method for general assembly systems with material handling based on aggregated eventscheduling. IEEE Trans Autom Sci Eng 2009;7(4):762–75.
[22]
Keller N, Hu X. Towards data-driven simulation modeling for mobile agentbased systems. ACM Trans Model Comput Simul 2019;29(1):1–26.
[23]
Zhou L, Zhang L, Ren L, Wang J. Real-time scheduling of cloud manufacturing services based on dynamic data-driven simulation. IEEE Trans Ind Inform 2019;15(9):5042–51.
[24]
Cheng T, Podolsky S. Just-in-time manufacturing: an introduction. Berlin: Springer Science & Business Media; 1996.
[25]
Lyu Z, Lin P, Guo D, Huang GQ. Towards zero-warehousing smart manufacturing from zero-inventory just-in-time production. Robot ComputIntegr Manuf 2020;64:101932.
[26]
Kang JH, Kim YD. Coordination of inventory and transportation managements in a two-level supply chain. Int J Prod Econ 2010;123(1):137–45.
PDF(2483 KB)

Accesses

Citation

Detail

段落导航
相关文章

/