自供能主动式振动控制——从概念到模拟测试

Jin-Yang Li, Songye Zhu

工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 126-137.

PDF(3336 KB)
PDF(3336 KB)
工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 126-137. DOI: 10.1016/j.eng.2021.03.022
研究论文
Article

自供能主动式振动控制——从概念到模拟测试

作者信息 +

Self-Powered Active Vibration Control: Concept, Modeling, and Testing

Author information +
History +

摘要

主动式振动控制技术通常拥有优异的控制性能,但其在大型结构应用中常常伴随着巨大的能耗,使得我们在实际工程应用中较难看到它的身影。针对这一问题,本文创新性地提出了一种全新的解决方案:自供能的主动式振动控制系统;并针对性地对其拓扑设计、工作原理、能量流动等方面进行了介绍。通过对振动过程中能量流动的详细分析,我们进一步确认了系统的自供能可行性。此外,我们于实验室内搭建了一套所提出的自供能主动式控制系统,并成功将其应用到一个小型主动隔振台上。通过对解析、数值和实验结果的一系列探究,这个新型系统的有效性与可行性得到了充分的印证。预期这套新型装置可以非常容易地推广到其他多种工程领域中来实现所期望的主动控制效果。

Abstract

Despite their superior control performance, active vibration control techniques cannot be widely used in some engineering fields because of their substantial power demand in controlling large-scale structures. As an innovative solution to this problem, an unprecedented self-powered active vibration control system was established in this study. The topological design, working mechanism, and power flow of the proposed system are presented herein. The self-powering ability of the system was confirmed based on a detailed power flow analysis of vibration control processes. A self-powered actively controlled actuator was designed and applied to a scaled active vibration isolation table. The feasibility and effectiveness of the innovative system were successfully validated through a series of analytical, numerical, and experimental investigations. The setup and control strategy of the proposed system can be readily extended to diversified active vibration control applications in various engineering fields.

关键词

自供能主动式振动控制 / 能量采集 / 天钩控制 / 能量平衡 / 智能控制

Keywords

Self-powered active vibration control / Energy harvesting / Skyhook control / Power equilibrium / Smart control

引用本文

导出引用
Jin-Yang Li, Songye Zhu. 自供能主动式振动控制——从概念到模拟测试. Engineering. 2022, 11(4): 126-137 https://doi.org/10.1016/j.eng.2021.03.022

参考文献

[1]
Kuo SM, Morgan DR. Active noise control: a tutorial review. Proc IEEE 1999;87 (6):943–75.
[2]
Sharp RS, Crolla DA. Road vehicle suspension system design—a review. Veh Syst Dyn 1987;16(3):167–92.
[3]
Cao D, Song X, Ahmadian M. Editors’ perspectives: road vehicle suspension design, dynamics, and control. Veh Syst Dyn 2011;49(1–2):3–28.
[4]
He W, Ge SS. Dynamic modeling and vibration control of a flexible satellite. IEEE Trans Aerosp Electron Syst 2015;51(2):1422–31.
[5]
Soong TT, Costantinou MC, edtiors. Passive and active structural vibration control in civil engineering. New York: Springer-Verlag Wien; 1994.
[6]
Housner GW, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, et al. Structural control: past, present, and future. J Eng Mech 1997;123 (9):897–971.
[7]
Shen W, Zhu S, Xu YL, Zhu H. Energy regenerative tuned mass dampers in highrise buildings. Struct Contr Health Monit 2018;25(2):1–18.
[8]
Zhu S, Shen W, Xu Y. Linear electromagnetic devices for vibration damping and energy harvesting: modeling and testing. Eng Struct 2012;34:198–212.
[9]
Zhang C, Ou J. Control structure interaction of electromagnetic mass damper system for structural vibration control. J Eng Mech 2008;134(5):428–37.
[10]
Zhang C, Ou J. Modeling and dynamical performance of the electromagnetic mass driver system for structural vibration control. Eng Struct 2015;82:93–103.
[11]
Zhu S, Shen W, Qian X. Dynamic analogy between an electromagnetic shunt damper and a tuned mass damper. Smart Mater Struct 2013;22 (11):1–11.
[12]
Gonzalez-Buelga A, Clare LR, Neild SA, Jiang JZ, Inman DJ. An electromagnetic inerter-based vibration suppression device. Smart Mater Struct 2015;24 (5):055015.
[13]
Li JY, Zhu S, Shi X, Shen W. Electromagnetic shunt damper for bridge cable vibration mitigation: full-scale experimental study. J Struct Eng 2020;146 (1):04019175.
[14]
Zuo L, Cui W. Dual-functional energy-harvesting and vibration control: electromagnetic resonant shunt series tuned mass dampers. J Vib Acoust 2013;135(5):051018.
[15]
Zhang R, Wang X, John S. A comprehensive review of the techniques on regenerative shock absorber systems. Energies 2018;11(5):1–43.
[16]
Ko J, Ko S, Son H, Yoo B, Cheon J, Kim H. Development of brake system and regenerative braking cooperative control algorithm for automatictransmission-based hybrid electric vehicles. IEEE Trans Vehicular Technol 2015;64(2):431–40.
[17]
Lin CL, Hung HC, Li JC. Active control of regenerative brake for electric vehicles. Actuators 2018;7(4):1–14.
[18]
Nian X, Peng F, Zhang H. Regenerative braking system of electric vehicle driven by brushless DC motor. IEEE Trans Ind Electron 2014;61(10):5798–808.
[19]
Zhang J, Lv C, Gou J, Kong D. Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car. Proc Inst Mech Eng D J Automob Eng 2012;226(10):1289–302.
[20]
Cho SW, Jung HJ, Lee IW. Smart passive system based on magnetorheological damper. Smart Mater Struct 2005;14(4):707–14.
[21]
Kim IH, Jung HJ, Koo JH. Experimental evaluation of a self-powered smart damping system in reducing vibrations of a full-scale stay cable. Smart Mater Struct 2010;19(11):115027.
[22]
Chen C, Liao WH. A self-sensing magnetorheological damper with power generation. Smart Mater Struct 2012;21(2):025014.
[23]
Scruggs JT, Iwan WD. Structural control with regenerative force actuation networks. Struct Contr Health Monit 2005;12(1):25–45.
[24]
Suda Y, Nakadai S, Nakano K. Hybrid suspension system with skyhook control and energy regeneration (development of self-powered active suspension). Vehicle Syst Dyn 1998;29(S1):619–34.
[25]
Nakano K, Suda Y. Combined type self-powered active vibration control of truck cabins. Veh Syst Dyn 2004;41(6):449–73.
[26]
Tang X, Zuo L. Simultaneous energy harvesting and vibration control of structures with tuned mass dampers. J Intell Mater Syst Struct 2012;23 (18):2117–27.
[27]
Kawamoto Y, Suda Y, Inoue H, Kondo T. Modeling of electromagnetic damper for automobile suspension. J Syst Des Dyn 2007;1(3):524–35.
[28]
Li J, Zhu S, Shen J. Enhance the damping density of eddy current and electromagnetic dampers. Smart Struct Syst 2019;24(1):15–26.
[29]
Hsieh CY, Moallem M, Golnaraghi F. A bidirectional boost converter with application to a regenerative suspension system. IEEE Trans Vehicular Technol 2016;65(6):4301–11.
[30]
Zuo L, Tang X. Large-scale vibration energy harvesting. J Intell Mater Syst Struct 2013;24(11):1405–30.
[31]
Liu Y, Tian G, Wang Y, Lin J, Zhang Q, Hofmann HF. Active piezoelectric energy harvesting: general principle and experimental demonstration. J Intell Mater Syst Struct 2009;20(5):575–85.
[32]
Bowden JA, Burrow SG, Cammarano A, Clare LR, Mitcheson PD. Switched-mode load impedance synthesis to parametrically tune electromagnetic vibration energy harvesters. IEEE/ASME Trans Mechatron 2015;20(2):603–10.
[33]
Mitcheson PD, Toh TT, Wong KH, Burrow SG, Holmes AS. Tuning the resonant frequency and damping of an electromagnetic energy harvester using power electronics. IEEE Trans Circuits Syst II Express Briefs 2011;58(12):792–6.
[34]
Karnopp D, Crosby MJ, Harwood RA. Vibration control using semi-active force generators. J Eng Ind 1974;96(2):619–26.
PDF(3336 KB)

Accesses

Citation

Detail

段落导航
相关文章

/